Minimum time function of a non-autonomous control system

被引:0
|
作者
Pogodaev, Nikolay I. [1 ]
Voronov, Vsevolod A. [1 ]
机构
[1] Russian Acad Sci, Siberian Branch, Matrosov Inst Syst Dynam & Control Theory, Irkutsk, Russia
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 32期
基金
俄罗斯基础研究基金会;
关键词
Minimum time function; Non-autonomous system; Fast Marching Method; First order PDE; REGULARITY; BOUNDARY;
D O I
10.1016/j.ifacol.2018.11.508
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For a time-dependent control system we consider a "reversed" minimum time problem, which consists in finding the minimum time needed by the system, whose state is initially located in a given set, to reach a given point. We show that the minimum time function constructed in this way is a unique viscosity solution of a static first order PDE, provided that, at every point of the extended phase space, admissible velocities form a convex set containing zero in the interior. We also describe a version of the Fast Marching Method (FMM) that effectively solves this PDE. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:704 / 707
页数:4
相关论文
共 50 条
  • [21] Pitchfork bifurcation for non-autonomous interval maps
    D'Aniello, Emma
    Oliveira, Henrique
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2009, 15 (03) : 291 - 302
  • [22] Asymptotic behavior of non-autonomous lattice systems
    Wang, Bixiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (01) : 121 - 136
  • [23] Continuity and random dynamics of the non-autonomous stochastic FitzHugh-Nagumo system on RN
    Zhao, Wenqiang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (10) : 3801 - 3824
  • [24] Non-autonomous (p, q)-equations with unbalanced growth
    Papageorgiou, Nikolaos S.
    Pudelko, Anna
    Radulescu, Vicentiu D.
    MATHEMATISCHE ANNALEN, 2023, 385 (3-4) : 1707 - 1745
  • [25] Hidden strange nonchaotic dynamics in a non-autonomous model
    Asir, M. Paul
    Thamilmaran, K.
    Prasad, Awadhesh
    Feudel, Ulrike
    Kuznetsov, N. V.
    Shrimali, Manish Dev
    CHAOS SOLITONS & FRACTALS, 2023, 168
  • [26] A unified observability result for non-autonomous observation problems
    Gabel, Fabian
    Seelmann, Albrecht
    ARCHIV DER MATHEMATIK, 2024, 122 (02) : 227 - 239
  • [27] ON THE CONTINUATION OF SOLUTIONS OF NON-AUTONOMOUS SEMILINEAR PARABOLIC PROBLEMS
    Carvalho, Alexandre N.
    Cholewa, Jan W.
    Nascimento, Marcelo J. D.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2016, 59 (01) : 17 - 55
  • [28] Cauchy problem for non-autonomous fractional evolution equations
    He, Jia Wei
    Zhou, Yong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (06) : 2241 - 2274
  • [29] On ω-limit sets of non-autonomous discrete systems on trees
    Sun, Taixiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (04) : 781 - 784
  • [30] A unified observability result for non-autonomous observation problems
    Fabian Gabel
    Albrecht Seelmann
    Archiv der Mathematik, 2024, 122 : 227 - 239