Preparation and characterization of LiFePO4 cathode materials by hydrothermal method

被引:65
|
作者
Jin, Bo [1 ]
Gu, Hal-Bon [1 ,2 ]
机构
[1] Chonnam Natl Univ, Dept Elect Engn, Kwangju 500757, South Korea
[2] Jilin Univ, Coll Mat Sci & Engn, Changchun 130025, Peoples R China
关键词
olivine; lithium-ion batteries; cathode materials; orthorhombic; hydrothermal method;
D O I
10.1016/j.ssi.2007.12.057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phospho-olivine LiFCPO4 cathode materials were prepared by hydrothermal reaction at different temperatures. The structural and morphological performance of LiFePO4 powders were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and high-resolution transmission electron microscope (HR-TEM), LiFePO4/Li batteries were characterized electrochemically by cyclic voltammetry (CV) and charge/ discharge experiments. The XRD results demonstrate that LiFePO4 powder has an orthorhombic olivine-type structure with a space group of Puma. Among the synthesized cathode materials, LiFePO4 synthesized at 170 degrees C and subsequent 500 degrees C shows the best electrochemical properties with an initial discharge capacity of 167 mAh g(-1) (98% of theoretical capacity) close to the theoretical capacity of LiFePO4 (170 mAh g(-1)) at 0.1 C rate. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1907 / 1914
页数:8
相关论文
共 50 条
  • [31] Characterization and Electrochemical Performance of ZnO Modified LiFePO4/C Cathode Materials for Lithium-ion Batteries
    Liu Shu-Xin
    Yin Heng-Bo
    Wang Hai-Bin
    He Ji-Chuan
    Wang Hong
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2014, 33 (03) : 353 - 360
  • [32] Characterization and Electrochemical Performance of ZnO Modified LiFePO4/C Cathode Materials for Lithium-ion Batteries
    刘树信
    殷恒波
    王海滨
    何冀川
    王洪
    Chinese Journal of Structural Chemistry, 2014, 33 (03) : 353 - 360
  • [33] Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries
    Takahashi, M
    Tobishima, S
    Takei, K
    Sakurai, Y
    JOURNAL OF POWER SOURCES, 2001, 97-8 : 508 - 511
  • [34] Hydrothermal Synthesis of Leaf-like LiFePO4/C Cathode Composites
    Yun Qiang
    Zhou Yuan
    Hai Chun-Xi
    Shen Yue
    Li Xiang
    Zhang Li-Juan
    Li Song
    Ding Xiu-Ping
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2015, 31 (05) : 880 - 887
  • [35] Preparation and characterization of nano-particle LiFePO4 and LiFePO4/C by spray-drying and post-annealing method
    Gao Fei
    Tang Zhi-Yuan
    Xue Jian-Jun
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2007, 23 (09) : 1603 - 1608
  • [36] Preparation of LiFePO4 as a cathode material for lithium ion batteries by a citric acid complex method
    Higuchi, Masashi
    Uchida, Kaori
    Katayama, Keiichi
    Azuma, Yasuo
    ELECTROCERAMICS IN JAPAN IX, 2006, 320 : 259 - 262
  • [37] Rapid synthesis of LiFePO4 nanoparticles by microwave-assisted hydrothermal method
    Zhang, Lianhong
    Liang, Hongyu
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2013, 49 (05) : 492 - 495
  • [38] A carbothermal reduction method for enhancing the electrochemical performance of LiFePO4/C composite cathode materials
    Shaoying Weng
    Zeheng Yang
    Qiang Wang
    Jun Zhang
    Weixin Zhang
    Ionics, 2013, 19 : 235 - 243
  • [39] A carbothermal reduction method for enhancing the electrochemical performance of LiFePO4/C composite cathode materials
    Weng, Shaoying
    Yang, Zeheng
    Wang, Qiang
    Zhang, Jun
    Zhang, Weixin
    IONICS, 2013, 19 (02) : 235 - 243
  • [40] Effect of carbon sources on the morphology of LiFePO4 cathode materials for lithium ion batteries
    Y. -M. Bai
    H. Chen
    Sh. -Ch. Han
    Russian Journal of Electrochemistry, 2011, 47 : 84 - 88