Radial single point rupture solutions for a general MEMS model

被引:5
作者
Ghergu, Marius [1 ,2 ]
Miyamoto, Yasuhito [3 ]
机构
[1] Univ Coll Dublin, Sch Math & Stat, Dublin 4, Ireland
[2] Romanian Acad, Inst Math Simion Stoilow, 21 Calea Grivitei St, Bucharest 010702, Romania
[3] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
关键词
ELLIPTIC-EQUATIONS; NO TOUCHDOWN; PERMITTIVITY; BEHAVIOR;
D O I
10.1007/s00526-021-02158-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the initial value problem {r(-(gamma-1)) (r(alpha) vertical bar u'vertical bar(beta-1)u')' = 1/f(u) for 0 < r < r(0), u(r) > 0 for 0 < r < r(0,) u(0) = 0, for gamma > alpha > beta >= 1 and f is an element of C[0, (u) over bar)boolean AND C-2 (0, (u) over bar), f(0) = 0, f(u) > 0 on (0, (u) over bar) and f satisfies certain assumptions which include the standard case of pure power nonlinearities encountered in the study of Micro-Electromechanical Systems (MF,MS). We obtain the existence and uniqueness of a solution u* to the above problem, the rate at which it approaches the value zero at the origin and the intersection number of points with the corresponding regular solutions u (center dot , a) (with u (0, a) = a) as a -> 0. In particular, these results yield the uniqueness of a radial single point rupture solution and other qualitative properties for MEMS models. The bifurcation diagram is also investigated.
引用
收藏
页数:29
相关论文
共 30 条
[1]   Global existence for nonlocal MEMS [J].
Cassani, Daniele ;
Fattorusso, Luisa ;
Tarsia, Antonio .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (16) :5722-5726
[2]  
Castorina D, 2008, METHODS APPL ANAL, V15, P277
[3]  
Dancer EN., 2000, ANN MAT PUR APPL, V178, P225, DOI DOI 10.1007/BF02505896
[4]   Qualitative analysis of rupture solutions for a MEMS problem [J].
Davila, Juan ;
Wang, Kelei ;
Wei, Juncheng .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (01) :221-242
[5]   Point Ruptures for a MEMS Equation with Fringing Field [J].
Davila, Juan ;
Wei, Juncheng .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (08) :1462-1493
[6]   Some results for a class of quasilinear elliptic equations with singular nonlinearity [J].
do O, Joao Marcos ;
da Silva, Esteban .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 148 :1-29
[7]  
Esposito P, 2010, COURANT LECT NOTES M, V20, P1
[8]  
Esposito P, 2008, METHODS APPL ANAL, V15, P341
[9]  
Esteve C, 2019, ADV DIFFERENTIAL EQU, V24, P465
[10]   Quantitative touchdown localization for the MEMS problem with variable dielectric permittivity [J].
Esteve, Carlos ;
Souplet, Philippe .
NONLINEARITY, 2018, 31 (11) :4883-4934