Kinetic insights on wet peroxide oxidation of caffeine using EDTA-functionalized low-cost catalysts prepared from compost generated in municipal solid waste treatment facilities

被引:9
作者
Diaz de Tuesta, Jose L. [1 ]
de Almeida, Flavio V. M. [1 ,2 ]
Oliveira, Jessica R. P. [1 ,3 ]
Praca, Paulo [4 ]
Guerreiro, Mario C. [2 ]
Gomes, Helder T. [1 ]
机构
[1] Inst Politecn Braganca, Ctr Invest Montanha CIMO, Campus Santa Apolonia, P-5300253 Braganca, Portugal
[2] Univ Fed Lavras, Dept Quim, Campus Univ, BR-37200000 Lavras, MG, Brazil
[3] Univ Tecnol Fed Parana UTFPR, Campus Ponta Grossa,Av Monteiro Lobato S-N Km 4, BR-84016210 Ponta Grossa, Parana, Brazil
[4] SA Empresa Intermunicipal, EIM, Residuos Nordeste, P-5370340 Mirandela, Portugal
关键词
Circular economy; Waste valorization; Compost; Catalytic wet peroxide oxidation; Contaminants of emerging concern; Micropollutant; EMERGING CONTAMINANTS; PROCESS OPTIMIZATION; ACTIVATED CARBON; PHOTO-FENTON; REMOVAL; WATER; DEGRADATION; ADSORPTION; PHARMACEUTICALS; DECOMPOSITION;
D O I
10.1016/j.eti.2021.101984
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Nowadays, sorted organic fraction of municipal solid waste is typically treated by anaerobic digestion processes, resulting therein a solid stream, further processed to obtain compost, whose production is higher than the existing demand as fertilizer. The current work proposes an alternative strategy for the recovering of compost through the production of low-cost catalysts by calcination (1073 K) and sulfuric acid treatments, followed by sequential functionalization with tetraethyl orthosilicate (TEOS) and ethylenediamine tetraacetic acid (EDTA). Activity and stability of the catalysts are assessed in the wet peroxide oxidation of synthetic wastewater effluents contaminated with caffeine, a model micro-pollutant, achieving its complete removal after 6 h at 353-383 K and catalyst loads of 0.5-2.5 g L-1. The increase of the catalytic activity of the materials upon functionalization with TEOS and EDTA is demonstrated and a kinetic modeling of caffeine degradation and hydrogen peroxide consumption with the best catalyst is assessed by pseudo-first power-law rate equations. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 53 条
[31]   Environmental mineralization of caffeine micro-pollutant by Fe-MFI zeolites [J].
Motuzas, Julius ;
Drobek, Martin ;
Martens, Dana L. ;
Vallicari, Cyril ;
Julbe, Anne ;
da Costa, Joao C. Diniz .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (04) :3628-3635
[32]   Application of CWPO to the treatment of pharmaceutical emerging pollutants in different water matrices with a ferromagnetic catalyst [J].
Munoz, Macarena ;
Mora, Francisco J. ;
de Pedro, Zahara M. ;
Alvarez-Torrellas, Silvia ;
Casas, Jose A. ;
Rodriguez, Juan J. .
JOURNAL OF HAZARDOUS MATERIALS, 2017, 331 :45-54
[33]   Rejection of Caffeine and Carbamazepine by Surface-Coated PVDF Hollow-Fiber Membrane System [J].
Ojajuni, Oluwatosin ;
Holder, Shima ;
Cavalli, Gabriel ;
Lee, Judy ;
Saroj, Devendra P. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (08) :2417-2425
[34]   The effect of H2 treatment on the activity of activated carbon for the oxidation of organic contaminants in water and the H2O2 decomposition [J].
Oliveira, LCA ;
Silva, CN ;
Yoshida, MI ;
Lago, RM .
CARBON, 2004, 42 (11) :2279-2284
[35]   Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS: Hourly variation [J].
Paiga, Paula ;
Correia, Manuela ;
Fernandes, Maria Joao ;
Silva, Ana ;
Carvalho, Manuela ;
Vieira, Joana ;
Jorge, Sandra ;
Silva, Jaime Gabriel ;
Freire, Cristina ;
Delerue-Matos, Cristina .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 648 :582-600
[36]   TiO2, surface modified TiO2 and graphene oxide-TiO2 photocatalysts for degradation of water pollutants under near-UV/Vis and visible light [J].
Pastrana-Martinez, Luisa M. ;
Morales-Torres, Sergio ;
Kontos, Athanassios G. ;
Moustakas, Nikolaos G. ;
Faria, Joaquim L. ;
Dona-Rodriguez, Jose M. ;
Falaras, Polycarpos ;
Silva, Adrian M. T. .
CHEMICAL ENGINEERING JOURNAL, 2013, 224 :17-23
[37]   Condensation By-Products in Wet Peroxide Oxidation: Fouling or Catalytic Promotion? Part I. Evidences of an Autocatalytic Process [J].
Quintanilla, Asuncion ;
Diaz de Tuesta, Jose L. ;
Figueruelo, Cristina ;
Munoz, Macarena ;
Casas, Jose A. .
CATALYSTS, 2019, 9 (06)
[38]   Synthesis of coal fly ash zeolite for the catalytic wet peroxide oxidation of Orange II [J].
Ramirez, Herney ;
Guerra Nunez, Maria Margarita ;
Barrera Bogoya, Anamaria ;
Blanco Gomez, Daniel Fernando ;
Ramos, Cinthia ;
di Luca, Carla ;
Inchaurrondo, Natalia ;
Haure, Patricia .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2019, 26 (05) :4277-4287
[39]   The influence of structure and surface chemistry of carbon materials on the decomposition of hydrogen peroxide [J].
Ribeiro, Rui S. ;
Silva, Adrian M. T. ;
Figueiredo, Jose L. ;
Faria, Joaquim L. ;
Gomes, Helder T. .
CARBON, 2013, 62 :97-108
[40]   Emerging environmental contaminants: Challenges facing our next generation and potential engineering solutions [J].
Richardson, Susan D. ;
Kimura, Susana Y. .
ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2017, 8 :40-56