Robust control of quantum systems by quantum systems

被引:3
作者
Konrad, Thomas [1 ,2 ]
Rouillard, Amy [1 ]
Kastner, Michael [3 ,4 ]
Uys, Hermann [5 ,6 ]
机构
[1] Univ KwaZulu Natal, Sch Chem & Phys, Private Bag X54001, ZA-4000 Durban, South Africa
[2] UKZN Node, Natl Inst Theoret & Computat Sci NITheCS, Private Bag X54001, ZA-4000 Durban, South Africa
[3] Univ Stellenbosch, Dept Phys, Inst Theoret Phys, ZA-7600 Stellenbosch, South Africa
[4] Hanse Wissensch Kolleg, Lehmkuhlenbusch 4, D-27753 Delmenhorst, Germany
[5] CSIR, Natl Laser Ctr, POB 395, ZA-0001 Pretoria, South Africa
[6] Stellenbosch Univ, Dept Phys, ZA-7600 Stellenbosch, South Africa
基金
新加坡国家研究基金会;
关键词
QUBIT; INFORMATION;
D O I
10.1103/PhysRevA.104.052614
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum systems can be controlled by other quantum systems in a reversible way, without any information leaking to the outside of the system-controller compound. Such coherent quantum control is deterministic, is less noisy than measurement-based feedback control, and has potential applications in a variety of quantum technologies, including quantum computation, quantum communication, and quantum metrology. Here we introduce a coherent feedback protocol, consisting of a sequence of identical interactions with controlling quantum systems, that steers a quantum system from an arbitrary initial state towards a target state. We determine the broad class of such coherent feedback channels that achieve convergence to the target state, and then stabilize as well as protect it against noise. Our results imply that also weak system-controller interactions can counter noise if they occur with suitably high frequency. We present an example of a control scheme that does not require knowledge of the target state encoded in the controllers, which could be the result of a quantum computation. It thus provides a mechanism for autonomous, purely quantum closed-loop control.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Speed limits in Liouville space for open quantum systems
    Uzdin, Raam
    Kosloff, Ronnie
    EPL, 2016, 115 (04)
  • [32] Classical Shadow Tomography for Continuous Variables Quantum Systems
    Becker, Simon
    Datta, Nilanjana
    Lami, Ludovico
    Rouze, Cambyse
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (05) : 3427 - 3452
  • [33] Mesoscopic spin systems as quantum entanglers
    Mirkamali, Maryam Sadat
    Cory, David G.
    PHYSICAL REVIEW A, 2020, 101 (03)
  • [34] Onset of decoherence in open quantum systems
    Privman, V
    NOISE AND INFORMATION IN NANOELECTRONICS, SENSORS AND STANDARDS, 2003, 5115 : 345 - 355
  • [35] Thermodynamic length in open quantum systems
    Scandi, Matteo
    Perarnau-Llobet, Marti
    QUANTUM, 2019, 3
  • [36] Teleportation Systems Toward a Quantum Internet
    Valivarthi, Raju
    Davis, Samantha, I
    Pena, Cristian
    Xie, Si
    Lauk, Nikolai
    Narvaez, Lautaro
    Allmaras, Jason P.
    Beyer, Andrew D.
    Gim, Yewon
    Hussein, Meraj
    Iskander, George
    Kim, Hyunseong Linus
    Korzh, Boris
    Mueller, Andrew
    Rominsky, Mandy
    Shaw, Matthew
    Tang, Dawn
    Wollman, Emma E.
    Simon, Christoph
    Spentzouris, Panagiotis
    Oblak, Daniel
    Sinclair, Neil
    Spiropulu, Maria
    PRX QUANTUM, 2020, 1 (02):
  • [37] Capacities of linear quantum optical systems
    Lupo, Cosmo
    Giovannetti, Vittorio
    Pirandola, Stefano
    Mancini, Stefano
    Lloyd, Seth
    PHYSICAL REVIEW A, 2012, 85 (06)
  • [38] COMPLEMENTARITY IN GENERIC OPEN QUANTUM SYSTEMS
    Banerjee, Subhashish
    Srikanth, R.
    MODERN PHYSICS LETTERS B, 2010, 24 (24): : 2485 - 2509
  • [39] Stability of Local Quantum Dissipative Systems
    Cubitt, Toby S.
    Lucia, Angelo
    Michalakis, Spyridon
    Perez-Garcia, David
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 337 (03) : 1275 - 1315
  • [40] Quantum Computing Systems: A Brief Overview
    Anukool, Waranont
    Lim, Jongseok
    Song, Yunheung
    Ahn, Jaewook
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 73 (06) : 841 - 845