Synthesis, structure and electrochemical properties of lanthanum manganese nanofibers doped with Sr and Cu

被引:64
作者
Cao, Yi [1 ]
Lin, Baoping [1 ]
Sun, Ying [1 ]
Yang, Hong [1 ]
Zhang, Xueqin [1 ]
机构
[1] Southeast Univ, Sch Chem & Chem Engn, Nanjing 211189, Jiangsu, Peoples R China
关键词
Lanthanum manganese; Supercapacitor; Electrospinning; Nanofibers; Double doping; BIRNESSITE-TYPE MNO2; ELECTRODE MATERIAL; ACTIVATED CARBON; MAGNETIC-PROPERTIES; ASSISTED SYNTHESIS; FACILE SYNTHESIS; NICKEL FOAM; FUEL-CELLS; HIGH-POWER; PERFORMANCE;
D O I
10.1016/j.jallcom.2015.03.054
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LaxSr1-xCu0.1Mn0.9O3-delta (LNF-x) (0.1 <= x <= 1) nanofibers are prepared by electrospun method. The structure of LNF-x and the electrochemical properties of LNF-x in 1 M Na2SO4 aqueous electrolyte are investigated. As a result, LNF-x nanofibers present a perovskite structure, and the LNF-0.5 sample exhibits the highest specific capacitance value of 464.5 F g(-1) at a current density of 2 A g(-1). The maximum energy density of 64.5Wh kg(-1) are achieved at a power density of 2 kW kg(-1) for the symmetric supercapacitor prepared by La0.5Sr0.5Cu0.1Mn0.9O3-delta nanofibers. More importantly, this symmetric supercapacitor also shows an excellent cycling life after 2000 charging and discharging cycles. Those results offer a suitable design of electrode materials for high-performance supercapacitors. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:204 / 213
页数:10
相关论文
共 65 条
[1]   Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor [J].
Bhattacharjya, Dhrubajyoti ;
Yu, Jong-Sung .
JOURNAL OF POWER SOURCES, 2014, 262 :224-231
[2]   Carbon-based nanostructured materials and their composites as supercapacitor electrodes [J].
Bose, Saswata ;
Kuila, Tapas ;
Mishra, Ananta Kumar ;
Rajasekar, R. ;
Kim, Nam Hoon ;
Lee, Joong Hee .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (03) :767-784
[3]   Structure, morphology and electrochemical properties of LaxSr1-xCo0.1Mn0.9O3-δ perovskite nanofibers prepared by electrospinning method [J].
Cao, Yi ;
Lin, Baoping ;
Sun, Ying ;
Yang, Hong ;
Zhang, Xueqin .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 624 :31-39
[4]   Electrospinning: designed architectures for energy conversion and storage devices [J].
Cavaliere, Sara ;
Subianto, Surya ;
Savych, Iuliia ;
Jones, Deborah J. ;
Roziere, Jacques .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (12) :4761-4785
[5]  
Chang J, 2013, ADV FUNCT MATER, V23, P5074, DOI [10.1002/adfm201301851, 10.1002/adfm.201301851]
[6]   Recent development of metal hydroxides as electrode material of electrochemical capacitors [J].
Cheng, J. P. ;
Zhang, J. ;
Liu, F. .
RSC ADVANCES, 2014, 4 (73) :38893-38917
[7]   Mixed-valence manganites [J].
Coey, JMD ;
Viret, M ;
von Molnár, S .
ADVANCES IN PHYSICS, 1999, 48 (02) :167-293
[8]   Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors [J].
Cottineau, T ;
Toupin, M ;
Delahaye, T ;
Brousse, T ;
Bélanger, D .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 82 (04) :599-606
[9]   Self-assembly of stacked layers of Mn3O4 nanosheets using a scalable chemical strategy for enhanced, flexible, electrochemical energy storage [J].
Dubal, Deepak P. ;
Holze, Rudolf .
JOURNAL OF POWER SOURCES, 2013, 238 :274-282
[10]   Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density [J].
Fan, Zhuangjun ;
Yan, Jun ;
Wei, Tong ;
Zhi, Linjie ;
Ning, Guoqing ;
Li, Tianyou ;
Wei, Fei .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (12) :2366-2375