A FULLY DISCRETE IMPLICIT-EXPLICIT FINITE ELEMENT METHOD FOR SOLVING THE FITZHUGH-NAGUMO MODEL

被引:3
作者
Cai, Li [1 ]
Sun, Ye [1 ]
Jing, Feifei [1 ]
Li, Yiqiang [1 ]
Shen, Xiaoqin [2 ]
Nie, Yufeng [3 ]
机构
[1] Northwestern Polytech Univ, NPU UoG Int Cooperat Lab Computat & Applicat Card, Xian 710072, Shaanxi, Peoples R China
[2] Xian Univ Technol, Sch Sci, Xian 710048, Shaanxi, Peoples R China
[3] Northwestern Polytech Univ, Res Ctr Computat Sci, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite element method; nonlinear reaction term; FitzHugh-Nagumo model; implicit-explicit scheme; stability and error estimates; TIME; CONVERGENCE; EQUATIONS; SCHEME; TISSUE;
D O I
10.4208/jcm.1901-m2017-0263
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work develops a fully discrete implicit-explicit finite element scheme for a parabolic-ordinary system with a nonlinear reaction term which is known as the FitzHugh-Nagumo model from physiology. The first-order backward Euler discretization for the time derivative, and an implicit-explicit discretization for the nonlinear reaction term are employed for the model, with a simple linearization technique used to make the process of solving equations more efficient. The stability and convergence of the fully discrete implicit-explicit finite element method are proved, which shows that the FitzHugh-Nagumo model is accurately solved and the trajectory of potential transmission is obtained. The numerical results are also reported to verify the convergence results and the stability of the proposed method.
引用
收藏
页码:469 / 486
页数:18
相关论文
共 37 条
[1]  
[Anonymous], 1975, Sobolev Spaces
[2]   Bifurcating Solutions to the Monodomain Model Equipped with FitzHugh-Nagumo Kinetics [J].
Artebrant, Robert .
JOURNAL OF APPLIED MATHEMATICS, 2009,
[3]   Towards accurate numerical method for monodomain models using a realistic heart geometry [J].
Belhamadia, Youssef ;
Fortin, Andre ;
Bourgault, Yves .
MATHEMATICAL BIOSCIENCES, 2009, 220 (02) :89-101
[4]  
BRENER SC, 1994, MATH THEORY FINITE E
[5]   Fourier spectral methods for fractional-in-space reaction-diffusion equations [J].
Bueno-Orovio, Alfonso ;
Kay, David ;
Burrage, Kevin .
BIT NUMERICAL MATHEMATICS, 2014, 54 (04) :937-954
[6]   A mathematical model for active contraction in healthy and failing myocytes and left ventricles [J].
Cai, Li ;
Wang, Yongheng ;
Gao, Hao ;
Li, Yiqiang ;
Luo, Xiaoyu .
PLOS ONE, 2017, 12 (04)
[7]  
Ciarlet Philippe G, 2002, FINITE ELEMENT METHO
[8]   Models of cardiac tissue electrophysiology: Progress, challenges and open questions [J].
Clayton, R. H. ;
Bernus, O. ;
Cherry, E. M. ;
Dierckx, H. ;
Fenton, F. H. ;
Mirabella, L. ;
Panfilov, A. V. ;
Sachse, F. B. ;
Seemann, G. ;
Zhang, H. .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2011, 104 (1-3) :22-48
[9]   Semi-implicit time-discretization schemes for the bidomain model [J].
Ethier, Marc ;
Bourgault, Yves .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) :2443-2468
[10]   Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 2D Simulation Study [J].
Gomez, Juan F. ;
Cardona, Karen ;
Martinez, Laura ;
Saiz, Javier ;
Trenor, Beatriz .
PLOS ONE, 2014, 9 (07)