Linkage and codes on complete intersections

被引:27
作者
Hansen, JP [1 ]
机构
[1] Aarhus Univ, Inst Math, DK-8000 Aarhus C, Denmark
[2] Inst Math Luminy, F-13288 Marseille, France
关键词
liason; linkage; complete intersections; error-correcting codes; Generalized Reed-Muller codes;
D O I
10.1007/s00200-003-0119-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This note is meant to be an introduction to cohomological methods and their use in the theory of error-correcting codes. In particular we consider evaluation codes on a complete intersection. The dimension of the code is determined by the Koszul complex for X subset of P-2 and a lower bound for the minimal distance is obtained through linkage. By way of example our result fits the well-known formula for the minimal distance of the Generalized Reed-Muller code.
引用
收藏
页码:175 / 185
页数:11
相关论文
共 20 条
[1]   CORRECTIONS [J].
AUSLANDER, M .
ANNALS OF MATHEMATICS, 1959, 70 (02) :395-397
[2]   CODIMENSION AND MULTIPLICITY [J].
AUSLANDER, M ;
BUCHSBAUM, DA .
ANNALS OF MATHEMATICS, 1958, 68 (03) :625-657
[3]  
Blake I. F., 1975, MATH THEORY CODING
[4]  
COPPO MA, 1992, CR ACAD SCI I-MATH, V314, P613
[5]   Reed-Muller codes on complete intersections [J].
Duursma, IM ;
Rentería, C ;
Tapia-Recillas, H .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2001, 11 (06) :455-462
[6]  
HANSEN JP, 1994, ZERO-DIMENSIONAL SCHEMES, P205
[7]  
Hartshorne R., 1977, ALGEBRAIC GEOM
[8]  
Iversen B., 1986, COHOMOLOGY SHEAVES
[9]   NEW GENERALIZATIONS OF REED-MULLER CODES .I. PRIMITIVE CODES [J].
KASAMI, T ;
LIN, S ;
PETERSON, WW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (02) :189-+
[10]  
LACHAUD G, 1993, NUMBER POINTS PLANE, P77