PhePLATZ1, a PLATZ transcription factor in moso bamboo (Phyllostachys edulis), improves drought resistance of transgenic Arabidopsis thaliana

被引:23
|
作者
Zhang, Kaimei [1 ]
Lan, Yangang [1 ]
Wu, Min [1 ]
Wang, Linna [1 ]
Liu, Hongxia [1 ]
Xiang, Yan [1 ]
机构
[1] Anhui Agr Univ, Sch Forestry & Landscape Architecture, Lab Modern Biotechnol, Hefei 230036, Peoples R China
基金
中国国家自然科学基金;
关键词
ABA signaling; Drought tolerance; Moso bamboo; PhePLATZ1; Stomatal closure; ACTING REGULATORY ELEMENTS; ABSCISIC-ACID; OSMOTIC-STRESS; ROS HOMEOSTASIS; CONFERS DROUGHT; TOLERANCE; ABA; PROTEIN; EXPRESSION; SALINITY;
D O I
10.1016/j.plaphy.2022.07.004
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought is one of the most serious environmental stresses. Plant AT-rich sequence and zinc-binding (PLATZ) proteins perform indispensable functions to regulate plant growth and development and to respond to environmental stress. In this present study, we identified PhePLATZ1 in moso bamboo and found that its expression was up-regulated in response to 20% PEG-6000 and abscisic acid (ABA) treatments. Next, transgenic PhePLATZ1overexpressing Arabidopsis lines were generated. Overexpression of PhePLATZ1 improved drought stress resistance of transgenic plants by mediating osmotic regulation, enhancing water retention capacity and reducing membrane and oxidative damage. These findings were corroborated by analysing physiological indicators including chlorophyll, relative water content, leaf water loss rate, electrolyte leakage, H2O2, proline, malondialdehyde content and the enzyme activities of peroxidase and catalase. Subsequent seed germination and seedling root length experiments that included exposure to exogenous ABA treatments showed that ABA sensitivity decreased in transgenic plants relative to wild-type plants. Moreover, transgenic PhePLATZ1-overexpressing plants promoted stomatal closure in response to ABA treatment, suggesting that PhePLATZ1 might play a positive regulatory role in the drought resistance of plants via the ABA signaling pathway. In addition, the transgenic PhePLATZ1-OE plants showed altered expression of some stress-related genes when grown under drought conditions. Taken together, these findings improve our understanding of the drought response of moso bamboo and provide a key candidate gene for the molecular breeding of this species for drought tolerance.
引用
收藏
页码:121 / 134
页数:14
相关论文
共 50 条
  • [31] Overexpression of a Grape WRKY Transcription Factor VhWRKY44 Improves the Resistance to Cold and Salt of Arabidopsis thaliana
    Zhang, Lihua
    Xing, Liwei
    Dai, Jing
    Li, Zhenghao
    Zhang, Aoning
    Wang, Tianhe
    Liu, Wanda
    Li, Xingguo
    Han, Deguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (13)
  • [32] Soybean nuclear factor YA10 positively regulates drought resistance in transgenic Arabidopsis thaliana
    Yu, Yuehua
    Bai, Yucui
    Wang, Ping
    Wang, Yi
    Wan, Huina
    Liu, Chen
    Ni, Zhiyong
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2020, 180
  • [33] The SsWRKY1 transcription factor of Saccharum spontaneum enhances drought tolerance in transgenic Arabidopsis thaliana and interacts with 21 potential proteins to regulate drought tolerance in S. spontaneum
    Shen, Qing-Qing
    Wang, Tian-Ju
    Wang, Jun-Gang
    He, Li-Lian
    Zhao, Ting-Ting
    Zhao, Xue-Ting
    Xie, Lin-Yan
    Qian, Zhen-Feng
    Wang, Xian-Hong
    Liu, Lu-Feng
    Chen, Shu-Ying
    Zhang, Shu-Zhen
    Li, Fu-Sheng
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 199
  • [34] Overexpression of a Camellia sinensis DREB transcription factor gene (CsDREB) increases salt and drought tolerance in transgenic Arabidopsis thaliana
    Wang, Mingle
    Zhuang, Jing
    Zou, Zhongwei
    Li, Qinghui
    Xin, Huahong
    Li, Xinghui
    JOURNAL OF PLANT BIOLOGY, 2017, 60 (05) : 452 - 461
  • [35] The NAC-type transcription factor CaNAC46 regulates the salt and drought tolerance of transgenic Arabidopsis thaliana
    Ma, Jing
    Wang, Li-yue
    Dai, Jia-xi
    Wang, Ying
    Lin, Duo
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [36] The Cotton GhWRKY91 Transcription Factor Mediates Leaf Senescence and Responses to Drought Stress in Transgenic Arabidopsis thaliana
    Gu, Lijiao
    Ma, Qiang
    Zhang, Chi
    Wang, Congcong
    Wei, Hengling
    Wang, Hantao
    Yu, Shuxun
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [37] ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis
    Mao, Hude
    Yu, Lijuan
    Han, Ran
    Li, Zhanjie
    Liu, Hui
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2016, 105 : 55 - 66
  • [38] Transcription factor OsAP21 gene increases salt/drought tolerance in transgenic Arabidopsis thaliana
    Jin, Xiaofeng
    Xue, Yong
    Wang, Ren
    Xu, RanRan
    Bian, Lin
    Zhu, Bo
    Han, Hongjuan
    Peng, Rihe
    Yao, Quanhong
    MOLECULAR BIOLOGY REPORTS, 2013, 40 (02) : 1743 - 1752
  • [39] Transcription factor MdCBF1 gene increases freezing stress tolerance in transgenic Arabidopsis thaliana
    Xue, Y.
    Wang, Y. Y.
    Peng, R. H.
    Zhen, J. L.
    Zhu, B.
    Gao, J. J.
    Zhao, W.
    Han, H. J.
    Yao, Q. H.
    BIOLOGIA PLANTARUM, 2014, 58 (03) : 499 - 506
  • [40] The Maize WRKY Transcription Factor ZmWRKY40 Confers Drought Resistance in Transgenic Arabidopsis
    Wang, Chang-Tao
    Ru, Jing-Na
    Liu, Yong-Wei
    Yang, Jun-Feng
    Li, Meng
    Xu, Zhao-Shi
    Fu, Jin-Dong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (09)