PhePLATZ1, a PLATZ transcription factor in moso bamboo (Phyllostachys edulis), improves drought resistance of transgenic Arabidopsis thaliana

被引:23
|
作者
Zhang, Kaimei [1 ]
Lan, Yangang [1 ]
Wu, Min [1 ]
Wang, Linna [1 ]
Liu, Hongxia [1 ]
Xiang, Yan [1 ]
机构
[1] Anhui Agr Univ, Sch Forestry & Landscape Architecture, Lab Modern Biotechnol, Hefei 230036, Peoples R China
基金
中国国家自然科学基金;
关键词
ABA signaling; Drought tolerance; Moso bamboo; PhePLATZ1; Stomatal closure; ACTING REGULATORY ELEMENTS; ABSCISIC-ACID; OSMOTIC-STRESS; ROS HOMEOSTASIS; CONFERS DROUGHT; TOLERANCE; ABA; PROTEIN; EXPRESSION; SALINITY;
D O I
10.1016/j.plaphy.2022.07.004
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought is one of the most serious environmental stresses. Plant AT-rich sequence and zinc-binding (PLATZ) proteins perform indispensable functions to regulate plant growth and development and to respond to environmental stress. In this present study, we identified PhePLATZ1 in moso bamboo and found that its expression was up-regulated in response to 20% PEG-6000 and abscisic acid (ABA) treatments. Next, transgenic PhePLATZ1overexpressing Arabidopsis lines were generated. Overexpression of PhePLATZ1 improved drought stress resistance of transgenic plants by mediating osmotic regulation, enhancing water retention capacity and reducing membrane and oxidative damage. These findings were corroborated by analysing physiological indicators including chlorophyll, relative water content, leaf water loss rate, electrolyte leakage, H2O2, proline, malondialdehyde content and the enzyme activities of peroxidase and catalase. Subsequent seed germination and seedling root length experiments that included exposure to exogenous ABA treatments showed that ABA sensitivity decreased in transgenic plants relative to wild-type plants. Moreover, transgenic PhePLATZ1-overexpressing plants promoted stomatal closure in response to ABA treatment, suggesting that PhePLATZ1 might play a positive regulatory role in the drought resistance of plants via the ABA signaling pathway. In addition, the transgenic PhePLATZ1-OE plants showed altered expression of some stress-related genes when grown under drought conditions. Taken together, these findings improve our understanding of the drought response of moso bamboo and provide a key candidate gene for the molecular breeding of this species for drought tolerance.
引用
收藏
页码:121 / 134
页数:14
相关论文
共 50 条
  • [1] Overexpression of a moso bamboo (Phyllostachys edulis) transcription factor gene PheWRKY1 enhances disease resistance in transgenic Arabidopsis thaliana
    Cui, Xiao-Wei
    Zhang, Ying
    Qi, Fei-Yan
    Gao, Jian
    Chen, Yuan-Wen
    Zhang, Chun-Ling
    BOTANY, 2013, 91 (07) : 486 - 494
  • [2] A PLATZ transcription factor PhePLATZ8 from Moso bamboo ( Phyllostachys edulis) ) plays a positive role in regulating growth and abiotic stress tolerance
    Zhang, Kaimei
    Lan, Yangang
    Zhang, Shunran
    Wang, Linna
    Wu, Min
    Xiang, Yan
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 221
  • [3] Systematic Analysis and Functional Characterization of the PLATZ Transcription Factors in Moso Bamboo (Phyllostachys edulis)
    Zhang, Kaimei
    Lan, Yangang
    Shi, Yanan
    Gao, Yameng
    Wu, Min
    Xu, Yuzeng
    Xiang, Yan
    JOURNAL OF PLANT GROWTH REGULATION, 2023, 42 (01) : 218 - 236
  • [4] Systematic Analysis and Functional Characterization of the PLATZ Transcription Factors in Moso Bamboo (Phyllostachys edulis)
    Kaimei Zhang
    Yangang Lan
    Yanan Shi
    Yameng Gao
    Min Wu
    Yuzeng Xu
    Yan Xiang
    Journal of Plant Growth Regulation, 2023, 42 : 218 - 236
  • [5] TCP10, a TCP transcription factor in moso bamboo (Phyllostachys edulis), confers drought tolerance to transgenic plants
    Liu, Huanlong
    Gao, Yameng
    Wu, Min
    Shi, Yanan
    Wang, Hao
    Wu, Lin
    Xiang, Yan
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2020, 172
  • [6] PeSNAC-1 a NAC transcription factor from moso bamboo (Phyllostachys edulis) confers tolerance to salinity and drought stress in transgenic rice
    Hou, Dan
    Zhao, Zhongyu
    Hu, Qiutao
    Li, Ling
    Vasupalli, Naresh
    Zhuo, Juan
    Zeng, Wei
    Wu, Aimin
    Lin, Xinchun
    TREE PHYSIOLOGY, 2020, 40 (12) : 1792 - 1806
  • [7] Water vapour diffusion resistance factor of Phyllostachys edulis (Moso bamboo)
    Huang, Puxi
    Latif, Eshrar
    Chang, Wen-Shao
    Ansell, Martin P.
    Lawrence, Mike
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 141 : 216 - 221
  • [8] PhebZIP47, a bZIP transcription factor from moso bamboo (Phyllostachys edulis), positively regulates the drought tolerance of transgenic plants
    Lan, Yangang
    Pan, Feng
    Zhang, Kaimei
    Wang, Linna
    Liu, Honxia
    Jiang, Chengzhi
    Chen, Feng
    Wu, Min
    Xiang, Yan
    INDUSTRIAL CROPS AND PRODUCTS, 2023, 197
  • [9] Genome-wide identification and expression analysis of the MYB transcription factor in moso bamboo (Phyllostachys edulis)
    Yang, Kebin
    Li, Ying
    Wang, Sining
    Xu, Xiurong
    Sun, Huayu
    Zhao, Hansheng
    Li, Xueping
    Gao, Zhimin
    PEERJ, 2019, 6
  • [10] Identification of TCP family in moso bamboo (Phyllostachys edulis) and salt tolerance analysis of PheTCP9 in transgenic Arabidopsis
    Yuzeng Xu
    Linna Wang
    Hongxia Liu
    Wei He
    Nianqin Jiang
    Min Wu
    Yan Xiang
    Planta, 2022, 256