Quantum computation capability verification protocol for noisy intermediate-scale quantum devices with the dihedral coset problem

被引:7
作者
Lin, Ruge [1 ,2 ,3 ]
Wen, Weiqiang [4 ]
机构
[1] Technol Innovat Inst, Abu Dhabi, U Arab Emirates
[2] Univ Barcelona, Dept Fis Quant & Astrofis, Marti i Franques 1, Barcelona 08028, Spain
[3] Univ Barcelona, Inst Ciencies Cosmos ICCUB, Marti i Franques 1, Barcelona 08028, Spain
[4] Inst Polytech Paris, Telecom Paris, LTCL, Paris, France
关键词
ALGORITHMS; SUPREMACY;
D O I
10.1103/PhysRevA.106.012430
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this article, we propose an interactive protocol for one party (the verifier) holding a quantum computer to verify the quantum computation power of another party???s (the prover) device via a one-way quantum channel. This protocol is referred to as the dihedral coset problem (DCP) challenge. The verifier needs to prepare quantum states encoding secrets (DCP samples) and send them to the prover. The prover is then tasked with recovering those secrets with a certain accuracy. Numerical simulation demonstrates that this accuracy is sensitive to errors in quantum hardware. Additionally, the DCP challenge serves as a benchmarking protocol for locally fully connected quantum architecture and aims to be performed on current and near-future quantum resources. We conduct a 4-qubit experiment on one of the IBM Q devices.
引用
收藏
页数:9
相关论文
共 31 条
[1]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[2]   Characterizing quantum supremacy in near-term devices [J].
Boixo, Sergio ;
Isakov, Sergei, V ;
Smelyanskiy, Vadim N. ;
Babbush, Ryan ;
Ding, Nan ;
Jiang, Zhang ;
Bremner, Michael J. ;
Martinis, John M. ;
Neven, Hartmut .
NATURE PHYSICS, 2018, 14 (06) :595-600
[3]  
Brakerski Z, 2020, Arxiv, DOI [arXiv:2005.04826, 10.48550/arXiv.2005.04826]
[4]   A Cryptographic Test of Quantumness and Certifiable Randomness from a Single Quantum Device [J].
Brakerski, Zvika ;
Christiano, Paul ;
Mahadev, Urmila ;
Vazirani, Umesh ;
Vidick, Thomas .
2018 IEEE 59TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2018, :320-331
[5]   Learning with Errors and Extrapolated Dihedral Cosets [J].
Brakerski, Zvika ;
Kirshanova, Elena ;
Stehle, Damien ;
Wen, Weiqiang .
PUBLIC-KEY CRYPTOGRAPHY - PKC 2018, PT II, 2018, 10770 :702-727
[6]  
Dattani N., 2019, arXiv, DOI [DOI 10.48550/ARXIV.1901.07636, 10.48550/arXiv.1901.07636]
[7]   Qibo: a framework for quantum simulation with hardware acceleration [J].
Efthymiou, Stavros ;
Ramos-Calderer, Sergi ;
Bravo-Prieto, Carlos ;
Perez-Salinas, Adrian ;
Garcia-Martin, Diego ;
Garcia-Saez, Artur ;
Latorre, Jose Ignacio ;
Carrazza, Stefano .
QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (01)
[8]   On quantum algorithms for noncommutative hidden subgroups [J].
Ettinger, M ;
Hoyer, P .
ADVANCES IN APPLIED MATHEMATICS, 2000, 25 (03) :239-251
[9]   Post hoc Verification of Quantum Computation [J].
Fitzsimons, Joseph F. ;
Hajdusek, Michal ;
Morimae, Tomoyuki .
PHYSICAL REVIEW LETTERS, 2018, 120 (04)
[10]  
Friedl Katalin, 2003, P 35 ANN ACM S THEOR, P1, DOI [10.1145/780542.780544, DOI 10.1145/780542.780544]