Large sample behaviour of some well-known robust estimators under long-range dependence

被引:19
作者
Levy-Leduc, C. [1 ]
Boistard, H. [2 ]
Moulines, E. [1 ]
Taqqu, M. S. [3 ]
Reisen, V. A. [4 ]
机构
[1] Telecom Paris Tech, CNRS, LTCI, F-75634 Paris 13, France
[2] Univ Toulouse 1, GREMAQ, Toulouse Sch Econ, F-31000 Toulouse, France
[3] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
[4] Univ Fed Espirito Santo, Dept Estat, Vitoria Es, Brazil
关键词
long-range dependence; U-process; Hodges-Lehmann location estimator; Bickel-Shamos scale estimator; Croux-Rousseeuw scale estimator; Ma-Genton autocovariance estimator;
D O I
10.1080/02331888.2011.539442
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper concerns robust location and scale estimators under long-range dependence, focusing on the Hodges-Lehmann location estimator, on the Shamos-Bickel scale estimator and on the Rousseeuw-Croux scale estimator. The large sample properties of these estimators are reviewed. This paper includes computer simulation in order to examine how well the estimators perform at finite sample sizes.
引用
收藏
页码:59 / 71
页数:13
相关论文
共 11 条
[1]  
[Anonymous], 2006, WILEY SERIES PROBABI, DOI DOI 10.1002/0470010940
[2]  
[Anonymous], CONTRIBUTIONS STAT
[3]  
[Anonymous], NEW YORK DIRECTIONS
[4]  
ARCONES M. A, 1994, ANN PROBAB, V22, P2242
[5]  
Doukhan P., 2003, Theory and applications of long-range dependence
[6]   MULTIPLE STOCHASTIC INTEGRALS WITH DEPENDENT INTEGRATORS [J].
FOX, R ;
TAQQU, MS .
JOURNAL OF MULTIVARIATE ANALYSIS, 1987, 21 (01) :105-127
[7]   ESTIMATES OF LOCATION BASED ON RANK-TESTS [J].
HODGES, JL ;
LEHMANN, EL .
ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (02) :598-&
[8]   A CLASS OF STATISTICS WITH ASYMPTOTICALLY NORMAL DISTRIBUTION [J].
HOEFFDING, W .
ANNALS OF MATHEMATICAL STATISTICS, 1948, 19 (03) :293-325
[9]  
LEVYLEDUC C, J TIME SER IN PRESS
[10]  
LEVYLEDUC C, 2009, ASYMPTOTIC PROPERTIE