ADMM decoding of error correction codes: from geometries to algorithms

被引:0
|
作者
Liu, Xishuo [1 ]
Draper, Stark C. [2 ]
机构
[1] Univ Wisconsin, Dept Elect & Comp Engn, 1415 Johnson Dr, Madison, WI 53706 USA
[2] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada
关键词
LDPC CODES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many code constraints can be represented using factor graphs. By relaxing these factorable coding constraints to linear constraints, it is straightforward to form a decoding optimization problem. Furthermore, by pairing these factor graphs with the alternating directions method of multipliers (ADMM) technique of large-scale optimization, one can develop distributed algorithms to solve the decoding optimization problems. However, the non-trivial part has always been developing an efficient algorithm for the subroutines of ADMM, which directly relates to the geometries of the relaxed coding constraints. In this paper, we focus on summarizing existing results and distilling insights to these problems. First, we review the ADMM formulation and geometries involved in the subroutines. Next, we present a linear time algorithm for projecting onto an l(1) ball with box constraints.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] A Method to Design Single Error Correction Codes With Fast Decoding for a Subset of Critical Bits
    Reviriego, Pedro
    Demirci, Mustafa
    Evans, Adrian
    Antonio Maestro, Juan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2016, 63 (02) : 171 - 175
  • [42] Decoding in hyperbolic spaces: Quantum LDPC codes with linear rate and efficient error correction
    Hastings, Matthew B.
    Quantum Information and Computation, 2014, 14 (13-14): : 1187 - 1202
  • [43] Improved Burst Error Correction Via List Decoding Quasi-Cyclic Codes
    Zeh, Alexander
    Roth, Ron M.
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 16 - 20
  • [44] Fractional decoding: Error correction from partial information
    Tamo, Itzhak
    Ye, Min
    Barg, Alexander
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 998 - 1002
  • [45] Explicit codes achieving list decoding capacity: Error-correction with optimal redundancy
    Guruswami, Venkatesan
    Rudra, Atri
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (01) : 135 - 150
  • [46] Simple algorithm of one error correction under decoding of the Reed-Solomon codes
    Dzhigan, V.I.
    Avtomatika i Vychislitel'naya Tekhnika, 1994, (06): : 50 - 56
  • [47] GROUP GEOMETRIES AND ERROR-CORRECTING CODES
    SMITH, SD
    JOURNAL OF ALGEBRA, 1995, 175 (01) : 199 - 211
  • [48] Optimised decoding of odd-weight single error correction double error detection codes with 64 bits
    Reviriego, P.
    Pontarelli, S.
    Maestro, J. A.
    ELECTRONICS LETTERS, 2013, 49 (25) : 1617 - 1618
  • [49] Quantum error-correcting codes and their geometries
    Ball, Simeon
    Centelles, Aina
    Huber, Felix
    ANNALES DE L INSTITUT HENRI POINCARE D, 2023, 10 (02): : 337 - 405
  • [50] Lowering the Error Floor of ADMM Penalized Decoder for LDPC Codes
    Jiao Xiaopeng
    Mu Jianjun
    CHINA COMMUNICATIONS, 2016, 13 (08) : 127 - 135