Bone marrow adiposity during pathologic bone loss: molecular mechanisms underlying the cellular events

被引:13
|
作者
Li, Jiao [1 ]
Lu, Lingyun [1 ,2 ]
Liu, Yi [3 ]
Yu, Xijie [1 ]
机构
[1] Sichuan Univ, West China Hosp, Lab Endocrinol & Metab, Dept Endocrinol & Metab,Rare Dis Ctr, 37 Guoxue Alley, Chengdu 610041, Sichuan, Peoples R China
[2] Sichuan Univ, West China Hosp, Dept Integrated Tradit Chinese & Western Med, Chengdu 610041, Peoples R China
[3] Sichuan Univ, West China Hosp, Rare Dis Ctr, Dept Rheumatol & Immunol, Chengdu 610041, Peoples R China
来源
JOURNAL OF MOLECULAR MEDICINE-JMM | 2022年 / 100卷 / 02期
基金
中国国家自然科学基金;
关键词
Bone marrow stromal cells; Bone marrow adipose tissue; Bone marrow adiposity; Bone loss; Molecular mechanism; MESENCHYMAL STEM-CELLS; PROMOTES OSTEOGENIC DIFFERENTIATION; COMPETING ENDOGENOUS RNA; PPAR-GAMMA; ADIPOGENIC DIFFERENTIATION; TRANSCRIPTION FACTOR; IN-VITRO; NONCODING RNAS; EXPRESSION; TISSUE;
D O I
10.1007/s00109-021-02164-1
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Bone marrow (BM) is a heterogeneous niche where bone marrow stromal cells (BMSCs), osteoblasts, osteoclasts, adipocytes, hematopoietic cells, and immune cells coexist. The cellular composition of BM changes with various pathophysiological states. A reduction in osteoblast number and a concomitant increase in adipocyte number in aging and pathological conditions put bone marrow adipose tissue (BMAT) into spotlight. Accumulating evidence strongly supports that an overwhelming production of BMAT is a major contributor to bone loss disorders. Therefore, BMAT-targeted therapy can be an efficient and feasible intervention for osteoporosis. However, compared to blocking bone-destroying molecules produced by BMAT, suppressing BMAT formation is theoretically a more effective and fundamental approach in treating osteoporotic bone diseases. Thus, a deep insight into the molecular basis underlying increased BM adiposity during pathologic bone loss is critical to formulate strategies for therapeutically manipulating BMAT. In this review, we comprehensively summarize the molecular mechanisms involved in adipocyte differentiation of BMSCs as well as the interaction between bone marrow adipocytes and osteoclasts. More importantly, we further discuss the potential clinical implications of therapeutically targeting the upstream of BMAT formation in bone loss diseases.
引用
收藏
页码:167 / 183
页数:17
相关论文
共 50 条
  • [21] Bone Tissue Regeneration - Application of Mesenchymal Stem Cells and Cellular and Molecular Mechanisms
    Zhang, Jin
    Chen, Jake
    CURRENT STEM CELL RESEARCH & THERAPY, 2017, 12 (05) : 357 - 364
  • [22] Individual or combination treatments with lapatinib and paclitaxel cause potential bone loss and bone marrow adiposity in rats
    Lee, Alice M. C.
    Bowen, Joanne M.
    Su, Yu-Wen
    Plews, Erin
    Chung, Rosa
    Keefe, Dorothy M. K.
    Xian, Cory J.
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (03) : 4180 - 4191
  • [23] Reporting Guidelines, Review of Methodological Standards, and Challenges Toward Harmonization in Bone Marrow Adiposity Research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society
    Tratwal, Josefine
    Labella, Rossella
    Bravenboer, Nathalie
    Kerckhofs, Greet
    Douni, Eleni
    Scheller, Erica L.
    Badr, Sammy
    Karampinos, Dimitrios C.
    Beck-Cormier, Sarah
    Palmisano, Biagio
    Poloni, Antonella
    Moreno-Aliaga, Maria J.
    Fretz, Jackie
    Rodeheffer, Matthew
    Boroumand, Parastoo
    Rosen, Clifford J.
    Horowitz, Mark C.
    van der Eerden, Bram C. J.
    Veldhuis-Vlug, Annegreet G.
    Naveiras, Olaia
    FRONTIERS IN ENDOCRINOLOGY, 2020, 11
  • [24] Meeting report of the 2016 bone marrow adiposity meeting
    van der Eerden, Bram
    van Wijnen, Andre
    ADIPOCYTE, 2017, 6 (04) : 304 - 313
  • [25] Guidelines for Biobanking of Bone Marrow Adipose Tissue and Related Cell Types: Report of the Biobanking Working Group of the International Bone Marrow Adiposity Society
    Lucas, Stephanie
    Tencerova, Michaela
    von der Weid, Benoit
    Andersen, Thomas Levin
    Attane, Camille
    Behler-Janbeck, Friederike
    Cawthorn, William P.
    Ivaska, Kaisa K.
    Naveiras, Olaia
    Podgorski, Izabela
    Reagan, Michaela R.
    van der Eerden, Bram C. J.
    FRONTIERS IN ENDOCRINOLOGY, 2021, 12
  • [26] Regulatory pathways associated with bone loss and bone marrow adiposity caused by aging, chemotherapy, glucocorticoid therapy and radiotherapy
    Georgiou, Kristen R.
    Hui, Susanta K.
    Xian, Cory J.
    AMERICAN JOURNAL OF STEM CELLS, 2012, 1 (03): : 205 - 224
  • [27] Exercise Increases Bone in SEIPIN Deficient Lipodystrophy, Despite Low Marrow Adiposity
    McGrath, Cody
    Little-Letsinger, Sarah E.
    Sankaran, Jeyantt Srinivas
    Sen, Buer
    Xie, Zhihui
    Styner, Martin A.
    Zong, Xiaopeng
    Chen, Weiqin
    Rubin, Janet
    Klett, Eric L.
    Coleman, Rosalind A.
    Styner, Maya
    FRONTIERS IN ENDOCRINOLOGY, 2022, 12
  • [28] Propranolol attenuates calorie restriction- and high calorie diet-induced bone marrow adiposity
    Baek, Kyunghwa
    Park, Hyun-Jung
    Hwang, Hyo Rin
    Baek, Jeong-Hwa
    BMB REPORTS, 2014, 47 (10) : 587 - 592
  • [29] The cellular and molecular mechanisms of bone invasion by oral squamous cell carcinoma
    Jimi, E.
    Furuta, H.
    Matsuo, K.
    Tominaga, K.
    Takahashi, T.
    Nakanishi, O.
    ORAL DISEASES, 2011, 17 (05) : 462 - 468
  • [30] Panax notoginseng saponins mitigate ovariectomy-induced bone loss and inhibit marrow adiposity in rats
    Fan, Jing-Zheng
    Wang, Yi
    Meng, Yan
    Li, Guan-Wu
    Chang, Shi-Xin
    Nian, Hua
    Liang, Yong-Jie
    MENOPAUSE-THE JOURNAL OF THE NORTH AMERICAN MENOPAUSE SOCIETY, 2015, 22 (12): : 1343 - 1350