A Simple Approach for Vortex Core Visualization

被引:7
|
作者
Li, Jiajia [1 ]
Carrica, Pablo M. [1 ]
机构
[1] Univ Iowa, IIHR Hydrosci & Engn, Iowa City, IA 52242 USA
来源
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME | 2020年 / 142卷 / 05期
关键词
vortices; computational fluid dynamics; VORTICAL FLOWS; IDENTIFICATION; DYNAMICS;
D O I
10.1115/1.4045999
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We propose a method to visualize vortex cores based on manipulation of the pressure field produced by isolated vortices in incompressible flow. Under ideal conditions, the function D=2| backward difference p|/backward difference 2p yields an approximate distance to vortex enterlines. As opposed to local methods to identify coherent structures, isosurfaces of D produce a field of vortex tubes equidistant to the vortex core center which, ideally, are independent of vortex intensity or size. In contrast to other line-vortex identification methods, which typically rely on algorithms to detect vortex core lines and frequently need complex implementations, the proposed method can be computed from the local Eulerian velocity and pressure fields as easily as vortex identification methods such as the Q and lambda(2) criteria. D=2| backward difference p|/ backward difference 2p results in the exact distance to the core center for a Rankine vortex and is in general valid for the region of a vortex where there is pure rotation, yielding an approximation to the distance farther from the core in other simple one-dimensional vortex models. The methodology performs well in all tests we attempted, though limitations are presented and discussed. The method is demonstrated for a canonical Burgers vortex, a Bodewadt vortex, homogeneous isotropic turbulent flow, the wake of a propeller, a heaving plate, and a turning containership. The proposed method helps to better visualize vortical flow fields by displaying vortex cores, complementing methods like Q and lambda(2) which display vortical volumes.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Expansion of a superconducting vortex core into a diffusive metal
    Stolyarov, Vasily S.
    Cren, Tristan
    Brun, Christophe
    Golovchanskiy, Igor A.
    Skryabina, Olga V.
    Kasatonov, Daniil I.
    Khapaev, Mikhail M.
    Kupriyanov, Mikhail Yu.
    Golubov, Alexander A.
    Roditchev, Dimitri
    NATURE COMMUNICATIONS, 2018, 9
  • [32] LIUTEX CORE LINE FOR VORTEX STRUCTURE IN TURBULENCE
    Alvarez, Oscar
    Yu, Yifei
    Liu, Chaoqun
    PROCEEDINGS OF ASME 2021 FLUIDS ENGINEERING DIVISION SUMMER MEETING (FEDSM2021), VOL 3, 2021,
  • [33] Effect of the Precessing Vortex Core on Primary Atomization
    Baerow, Enrico
    Gepperth, Sebastian
    Koch, Rainer
    Bauer, Hans-Joerg
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2015, 229 (06): : 909 - 929
  • [34] Engineering the size of dark core of an optical vortex
    Kumar, Ashok
    Vaity, Pravin
    Krishna, Yedhu
    Singh, R. P.
    OPTICS AND LASERS IN ENGINEERING, 2010, 48 (03) : 276 - 281
  • [35] Optical Vortex Interactions Depend on Core Structure
    Andersen, Jasmine M.
    Voitiv, Andrew A.
    Lusk, Mark T.
    Siemens, Mark E.
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [36] Switching the Magnetic Vortex Core in a Single Nanoparticle
    Pinilla-Cienfuegos, Elena
    Manas-Valero, Samuel
    Forment-Aliaga, Alicia
    Coronado, Eugenio
    ACS NANO, 2016, 10 (02) : 1764 - 1770
  • [37] Effects of surface anisotropy on magnetic vortex core
    Pylypovskyi, Oleksandr V.
    Sheka, Denis D.
    Kravchuk, Volodymyr P.
    Gaididei, Yuri
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2014, 361 : 201 - 205
  • [38] Motion of a vortex ring in a simple shear flow
    Cheng, M.
    Lou, J.
    Lim, T. T.
    PHYSICS OF FLUIDS, 2009, 21 (08)
  • [39] Simple technique for generating the perfect optical vortex
    Garcia-Garcia, Joaquin
    Rickenstorff-Parrao, Carolina
    Ramos-Garcia, Ruben
    Arrizon, Victor
    Ostrovsky, Andrey S.
    OPTICS LETTERS, 2014, 39 (18) : 5305 - 5308
  • [40] A simple three-dimensional vortex micromixer
    Long, Maureen
    Sprague, Michael A.
    Grimes, Anthony A.
    Rich, Brent D.
    Khine, Michelle
    APPLIED PHYSICS LETTERS, 2009, 94 (13)