Hierarchical Bayesian space-time models

被引:274
|
作者
Wikle, CK
Berliner, LM
Cressie, N
机构
[1] Natl Ctr Atmospher Res, Geophys Stat Project, Boulder, CO 80307 USA
[2] Natl Inst Stat Sci, Columbus, OH 43210 USA
[3] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
[4] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
atmospheric science; dynamical systems; environmental studies; Gibbs sampling; Markov random field; MCMC; non-stationarity; temperature;
D O I
10.1023/A:1009662704779
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Space-time data are ubiquitous in the environmental sciences. Often, as is the case with atmospheric and oceanographic processes, these data contain many different scales of spatial and temporal variability. Such data are often non-stationary in space and time and may involve many observation/prediction locations. These factors can limit the effectiveness of traditional spacetime statistical models and methods. In this article, we propose the use of hierarchical space-time models to achieve more flexible models and methods for the analysis of environmental data distributed in space and time. The first stage of the hierarchical model specifies a measurement-error process for the observational data in terms of some 'state' process. The second stage allows for site-specific time series models for this state variable. This stage includes large-scale (e.g. seasonal) variability plus a space-time dynamic process for the 'anomalies'. Much of our interest is with this anomaly process. In the third stage, the parameters of these time series models, which are distributed in space, are themselves given a joint distribution with spatial dependence (Markov random fields). The Bayesian formulation is completed in the last two stages by specifying priors on parameters. We implement the model in a Markov chain Monte Carlo framework and apply it to an atmospheric data set of monthly maximum temperature.
引用
收藏
页码:117 / 154
页数:38
相关论文
共 50 条
  • [41] Wavelets for the space-time structure analysis of physical fields
    Frick, P. G.
    Sokoloff, D. D.
    Stepanov, R. A.
    PHYSICS-USPEKHI, 2022, 65 (01) : 62 - 89
  • [42] Space-Time Variability of Drought Characteristics in Pernambuco, Brazil
    da Silva Junior, Ivanildo Batista
    Araujo, Lidiane da Silva
    Stosic, Tatijana
    Menezes, Romulo Simoes Cezar
    da Silva, Antonio Samuel Alves
    WATER, 2024, 16 (11)
  • [43] A Hybrid Space-Time Modelling Approach for Forecasting Monthly Temperature
    Kumar, Ravi Ranjan
    Sarkar, Kader Ali
    Dhakre, Digvijay Singh
    Bhattacharya, Debasis
    ENVIRONMENTAL MODELING & ASSESSMENT, 2023, 28 (02) : 317 - 330
  • [44] Space-time intrinsic randomness of dynamical systems and statistical mechanics
    Courbage, M
    Kaminski, B
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 98 (02) : 145 - 149
  • [45] Space-Time Analysis of Conductive Paths with Allowance for Temperature Influence
    Yurkov, Nikolay K.
    Andreev, Pavel
    Bushmelev, Petr
    PROCEEDINGS OF THE XIX IEEE INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND MEASUREMENTS (SCM 2016), 2016, : 238 - 240
  • [46] Nonstationary space-time covariance functions induced by dynamical systems
    Senoussi, Rachid
    Porcu, Emilio
    SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (01) : 211 - 235
  • [47] A semi-parametric hourly space-time weather generator
    Pidoto, Ross
    Haberlandt, Uwe
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2023, 27 (21) : 3957 - 3975
  • [48] Estimation of domain discontinuities using Hierarchical Bayesian Fay-Herriot models
    van den Brakel, Jan A.
    Boonstra, Harm-Jan
    SURVEY METHODOLOGY, 2021, 47 (01) : 151 - 189
  • [49] Dynamically Updated Spatially Varying Parameterizations of Hierarchical Bayesian Models for Spatial Data
    Bass, Mark R.
    Sahu, Sujit K.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (01) : 105 - 116
  • [50] DIMENSION-FREE MIXING TIMES OF GIBBS SAMPLERS FOR BAYESIAN HIERARCHICAL MODELS
    Ascolani, Filippo
    Zanella, Giacomo
    ANNALS OF STATISTICS, 2024, 52 (03) : 869 - 894