A Bayesian Model for Integrating Multiple Sources of Lifetime Information in System-Reliability Assessments

被引:51
|
作者
Reese, C. Shane [1 ]
Wilson, Alyson G. [2 ]
Guo, Jiqiang [2 ]
Hamada, Michael S. [3 ]
Johnson, Valen E. [4 ]
机构
[1] Brigham Young Univ, Dept Stat, Provo, UT 84602 USA
[2] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Biostat & Appl Math, Houston, TX 77030 USA
关键词
Censored Data; Expert Opinion; Lifetime Data; Markov Chain Monte Carlo; Multicomponent System; Multilevel Data; Prior Information; SERIES SYSTEMS; BINOMIAL SUBSYSTEMS; CONFIDENCE-LIMITS; COMPONENT; INFERENCE; INTERVALS;
D O I
10.1080/00224065.2011.11917851
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a Bayesian model for assessing the reliability of multicomponent systems. Novel features of this model are the natural manner in which lifetime data collected at either the component, subsystem, or system level are integrated with prior information at any level. The model allows pooling of information between similar components, the incorporation of expert opinion, and straightforward handling of censored data. The methodology is illustrated with two examples.
引用
收藏
页码:127 / 141
页数:15
相关论文
empty
未找到相关数据