BLOWUP OF SOLUTIONS OF THE HYDROSTATIC EULER EQUATIONS

被引:0
作者
Wong, Tak Kwong [1 ]
机构
[1] Univ Penn, Dept Math, David Rittenhouse Lab, Philadelphia, PA 19104 USA
关键词
Formation of singularity; ill-posedness; hydrostatic approximation; classical invariant transformations; DERIVATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that for a certain class of initial data, smooth solutions of the hydrostatic Euler equations blow up in finite time.
引用
收藏
页码:1119 / 1125
页数:7
相关论文
共 50 条
  • [31] On the Euler plus Prandtl Expansion for the Navier-Stokes Equations
    Kukavica, Igor
    Nguyen, Trinh T.
    Vicol, Vlad
    Wang, Fei
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (02)
  • [32] LAYER-AVERAGED EULER AND NAVIER-STOKES EQUATIONS
    Bristeau, M. -O.
    Guichard, C.
    Di Martino, B.
    Sainte-Marie, J.
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (05) : 1221 - 1246
  • [33] Diffusive relaxation limits of compressible Euler-Maxwell equations
    Xu, Jiang
    Xu, Qingrong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (01) : 135 - 148
  • [34] The hydrostatic approximation for the primitive equations by the scaled Navier–Stokes equations under the no-slip boundary condition
    Ken Furukawa
    Yoshikazu Giga
    Takahito Kashiwabara
    [J]. Journal of Evolution Equations, 2021, 21 : 3331 - 3373
  • [35] Time-periodic solutions for the full quantum Euler equation
    Li, Min
    Yao, Xianzhong
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (17) : 13146 - 13169
  • [36] Vanishing Viscosity Limit of the Navier-Stokes Equations to the Euler Equations for Compressible Fluid Flow with Vacuum
    Geng, Yongcai
    Li, Yachun
    Zhu, Shengguo
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 234 (02) : 727 - 775
  • [37] Quasi-hydrostatic primitive equations for ocean global circulation models
    Carine Lucas
    Madalina Petcu
    Antoine Rousseau
    [J]. Chinese Annals of Mathematics, Series B, 2010, 31 : 939 - 952
  • [38] Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics
    Azérad, P
    Guillén, F
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (04) : 847 - 859
  • [39] Convergence of the quantum Navier-Stokes-Poisson equations to the incompressible Euler equations for general initial data
    Yang, Jianwei
    Ju, Qiangchang
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 23 : 148 - 159
  • [40] Regularization by monotone perturbations of the hydrostatic approximation of Navier-Stokes equations
    Gallego, FO
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (12) : 1819 - 1848