BLOWUP OF SOLUTIONS OF THE HYDROSTATIC EULER EQUATIONS

被引:1
作者
Wong, Tak Kwong [1 ]
机构
[1] Univ Penn, Dept Math, David Rittenhouse Lab, Philadelphia, PA 19104 USA
关键词
Formation of singularity; ill-posedness; hydrostatic approximation; classical invariant transformations; DERIVATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that for a certain class of initial data, smooth solutions of the hydrostatic Euler equations blow up in finite time.
引用
收藏
页码:1119 / 1125
页数:7
相关论文
共 50 条
  • [21] Hyperbolicity of a semi-Lagrangian formulation of the hydrostatic free-surface Euler system
    Di Martino, Bernard
    El Hassanieh, Chourouk
    Godlewski, Edwige
    Guillod, Julien
    Sainte-Marie, Jacques
    NONLINEARITY, 2025, 38 (01)
  • [22] Ill-posedness for the Euler equations in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 74
  • [23] Euler and Navier-Stokes equations on the hyperbolic plane
    Khesin, Boris
    Misiolek, Gerard
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (45) : 18324 - 18326
  • [24] Non-hydrostatic layer-averaged approximation of Euler system with enhanced dispersion properties
    Escalante, C.
    Fernandez-Nieto, E. D.
    Garres-Diaz, J.
    de Luna, T. Morales
    Penel, Y.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04)
  • [25] On the Hydrostatic and Darcy Limits of the Convective Navier-Stokes Equations
    Brenier, Yann
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2009, 30 (06) : 683 - 696
  • [26] WELL-POSEDNESS OF THE HYDROSTATIC NAVIER-STOKES EQUATIONS
    Gerard-Varet, David
    Masmoudi, Nader
    Vicol, Vlad
    ANALYSIS & PDE, 2020, 13 (05): : 1417 - 1455
  • [27] On the hydrostatic approximation of the Navier-Stokes equations in a thin strip
    Paicu, Marius
    Zhang, Ping
    Zhang, Zhifei
    ADVANCES IN MATHEMATICS, 2020, 372
  • [28] SURPRISING SOLUTIONS TO THE ISENTROPIC EULER SYSTEM OF GAS DYNAMICS
    De Lellis, Camillo
    Chiodaroli, Elisabetta
    Kreml, Ondrej
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 1 - 10
  • [29] THE HYDROSTATIC APPROXIMATION OF COMPRESSIBLE ANISOTROPIC NAVIER-STOKES EQUATIONS
    Gao, H.
    Necasova, S.
    Tang, T.
    TOPICAL PROBLEMS OF FLUID MECHANICS 2022, 2022, : 59 - 64
  • [30] Simulation of wave breaking based on non-hydrostatic equations
    Zou G.
    Zhang Q.
    Zhang N.
    1600, Shanghai Jiaotong University (50): : 437 - 442