BLOWUP OF SOLUTIONS OF THE HYDROSTATIC EULER EQUATIONS

被引:1
|
作者
Wong, Tak Kwong [1 ]
机构
[1] Univ Penn, Dept Math, David Rittenhouse Lab, Philadelphia, PA 19104 USA
关键词
Formation of singularity; ill-posedness; hydrostatic approximation; classical invariant transformations; DERIVATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that for a certain class of initial data, smooth solutions of the hydrostatic Euler equations blow up in finite time.
引用
收藏
页码:1119 / 1125
页数:7
相关论文
共 50 条
  • [1] Generalized solutions and hydrostatic approximation of the Euler equations
    Brenier, Yann
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (14-17) : 1982 - 1988
  • [2] ANALYTICAL SOLUTIONS FOR THE FREE SURFACE HYDROSTATIC EULER EQUATIONS
    Boulanger, A. C.
    Bristeau, M. -O.
    Sainte-Marie, J.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2013, 11 (04) : 993 - 1010
  • [3] Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain
    Kukavica, Igor
    Temam, Roger
    Vicol, Vlad C.
    Ziane, Mohammed
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (03) : 1719 - 1746
  • [4] On the H s Theory of Hydrostatic Euler Equations
    Masmoudi, Nader
    Wong, Tak Kwong
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 204 (01) : 231 - 271
  • [5] Axisymmetric flow of ideal fluid moving in a narrow domain: A study of the axisymmetric hydrostatic Euler equations
    Strain, Robert M.
    Wong, Tak Kwong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (05) : 4619 - 4656
  • [6] Ill-Posedness of the Hydrostatic Euler and Singular Vlasov Equations
    Han-Kwan, Daniel
    Nguyen, Toan T.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 221 (03) : 1317 - 1344
  • [7] K -Convergence of Finite Volume Solutions of the Euler Equations
    Lukacova-Medvid'ova, Maria
    FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 25 - 37
  • [8] ON THE LOCAL WELL-POSEDNESS OF THE PRANDTL AND HYDROSTATIC EULER EQUATIONS WITH MULTIPLE MONOTONICITY REGIONS
    Kukavica, Igor
    Masmoudi, Nader
    Vicol, Vlad
    Wong, Tak Kwong
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (06) : 3865 - 3890
  • [9] Stationary solutions to stochastic 3D Euler equations in Holder space
    Lu, Lin
    Zhu, Rongchan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 177
  • [10] REMARKS ON THE COMPLEX EULER EQUATIONS
    Albritton, Dallas
    Ogden, W. Jacob
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2024, 23 (10) : 1407 - 1422