Direct observation of the grain boundaries acting as dislocation sources in nanocrystalline platinum

被引:13
作者
Li, Xiaochen [1 ]
Long, Haibo [1 ]
Zhang, Jianfei [1 ]
Ma, Dongfeng [1 ]
Kong, Deli [1 ]
Lu, Yan [1 ]
Sun, Shiduo [1 ]
Cai, Jixiang [1 ]
Wang, Xiaodong [1 ]
Wang, Lihua [1 ]
Mao, Shengcheng [1 ]
机构
[1] Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Fac Mat & Mfg, Beijing 100124, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Nanocrystalline metal; Grain boundary-mediated plasticity; Dislocations; Transmission electron microscopy; STACKING-FAULT ENERGIES; PLASTIC-DEFORMATION; NUCLEATION; GROWTH; MECHANISMS; METALS; AL; DUCTILITY; CRYSTALS; ROTATION;
D O I
10.1016/j.matchar.2021.111493
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Previous molecular simulations and experiments suggest that grain boundaries (GBs) serve as dislocation sources in nanocrystalline metals. Although a large number of studies have been carried out, direct experimental evidence of dislocation nucleation from GBs has rarely been achieved. In this work, we performed in situ transmission electron microscopy (TEM) observations for a Pt nanocrystalline film with an average grain size of -10 nm during tensile deformation. This study revealed direct evidence of dislocation nucleation at the GBs at the atomic scale. This is different from the common hypothesis predicted by molecular dynamic simulations that only partial dislocations are emitted from GBs in small-grained structures.
引用
收藏
页数:7
相关论文
共 69 条
[1]   Grain Boundary Sliding in Aluminum Nano-Bi-Crystals Deformed at Room Temperature [J].
Aitken, Zachary H. ;
Jang, Dongchan ;
Weinberger, Christopher R. ;
Greer, Julia R. .
SMALL, 2014, 10 (01) :100-108
[2]   First Dark Matter Results from the XENON100 Experiment [J].
Aprile, E. ;
Arisaka, K. ;
Arneodo, F. ;
Askin, A. ;
Baudis, L. ;
Behrens, A. ;
Bokeloh, K. ;
Brown, E. ;
Cardoso, J. M. R. ;
Choi, B. ;
Cline, D. B. ;
Fattori, S. ;
Ferella, A. D. ;
Giboni, K. -L. ;
Kish, A. ;
Lam, C. W. ;
Lamblin, J. ;
Lang, R. F. ;
Lim, K. E. ;
Lopes, J. A. M. ;
Undagoitia, T. Marrodan ;
Mei, Y. ;
Fernandez, A. J. Melgarejo ;
Ni, K. ;
Oberlack, U. ;
Orrigo, S. E. A. ;
Pantic, E. ;
Plante, G. ;
Ribeiro, A. C. C. ;
Santorelli, R. ;
dos Santos, J. M. F. ;
Schumann, M. ;
Shagin, P. ;
Teymourian, A. ;
Thers, D. ;
Tziaferi, E. ;
Wang, H. ;
Weinheimer, C. .
PHYSICAL REVIEW LETTERS, 2010, 105 (13)
[3]  
Ashcroft N. W., 1976, Solid State Physics
[4]   Tight-binding calculations of stacking energies and twinnability in fcc metals [J].
Bernstein, N ;
Tadmor, EB .
PHYSICAL REVIEW B, 2004, 69 (09)
[5]   Dislocation cross-slip in nanocrystalline fcc metals [J].
Bitzek, E. ;
Brandl, C. ;
Derlet, P. M. ;
Van Swygenhoven, H. .
PHYSICAL REVIEW LETTERS, 2008, 100 (23)
[6]   Effects of grain boundary disorder on dislocation emission [J].
Borovikov, Valery ;
Mendelev, Mikhail, I ;
King, Alexander H. .
MATERIALS LETTERS, 2019, 237 :303-305
[7]   Deformation twinning in nanocrystalline aluminum [J].
Chen, MW ;
Ma, E ;
Hemker, KJ ;
Sheng, HW ;
Wang, YM ;
Cheng, XM .
SCIENCE, 2003, 300 (5623) :1275-1277
[8]  
Derlet PM, 2002, PHILOS MAG A, V82, P1, DOI 10.1080/01418610110058310
[9]   Extreme grain refinement by severe plastic deformation: A wealth of challenging science [J].
Estrin, Y. ;
Vinogradov, A. .
ACTA MATERIALIA, 2013, 61 (03) :782-817
[10]   Dislocation plasticity reigns in a traditional twinning-induced plasticity steel by in situ observation [J].
Fu, X. ;
Wu, X. ;
Yu, Q. .
MATERIALS TODAY NANO, 2018, 3 :48-53