On the vector-valued Fourier transform and compatibility of operators

被引:2
|
作者
Park, IS [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Div Appl Math, Taejon 305701, South Korea
关键词
Banach space; operator; Fourier transform; vector-valued function; locally compact abelian group; dual group;
D O I
10.4064/sm168-2-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a locally compact abelian group and let 1 < p < 2. G' is the dual group of G, and p' the conjugate exponent of p. An operator T between Banach spaces X and Y is said to be compatible with the Fourier transform F-G if F-G circle times T : L-p (G) circle times X -> L-p' (G') circle times Y admits a continuous extension [F-G, T] : [L-p (G), X] -> [L-p' (G(')), Y)]. Let FTpG denote the collection of such T's. We show that FTpR (x G) = FTpZ (x G) = FTpZx G for any G and positive integer n. Moreover, if the factor group of G by its identity component is a direct sum of a torsion-free group and a finite group with discrete topology then FTpG =: FTpZ.
引用
收藏
页码:95 / 108
页数:14
相关论文
共 50 条
  • [11] Vector-valued extensions of operators related to the Ornstein-Uhlenbeck semigroup
    E. Harboure
    J. L. Torrea
    B. Viviani
    Journal d’Analyse Mathématique, 2003, 91 : 1 - 29
  • [12] Laplace transforms of polynomially bounded vector-valued functions and semigroups of operators
    R. DeLaubenfels
    Z. Huang
    S. Wang
    Y. Wang
    Israel Journal of Mathematics, 1997, 98 : 189 - 207
  • [13] Vector-Valued Cosine Transforms
    Pedro J. Miana
    Semigroup Forum, 2005, 71 : 119 - 133
  • [14] Denseness of norm attaining compact operators to some vector-valued function spaces
    Sun Kwang Kim
    Han Ju Lee
    Banach Journal of Mathematical Analysis, 2022, 16
  • [15] Denseness of norm attaining compact operators to some vector-valued function spaces
    Kim, Sun Kwang
    Lee, Han Ju
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (04)
  • [16] MINIMIZATION OF VECTOR-VALUED CONVEX FUNCTIONS
    Chen, Yuqing
    Cho, Yeol Je
    Kim, Jong Kyu
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (10) : 2053 - 2058
  • [17] MOMENTS OF VECTOR-VALUED FUNCTIONS AND MEASURES
    Duchon, Miloslav
    Debieve, Camille
    REAL FUNCTIONS '07: TOPOLOGY, MEASURES, INTEGRATION AND HARMONIC ANALYSIS, 2009, 42 : 199 - +
  • [18] Vector-valued holomorphic and harmonic functions
    Arendt, Wolfgang
    CONCRETE OPERATORS, 2016, 3 (01): : 68 - 76
  • [19] Algebraic theory of vector-valued integration
    Lucyshyn-Wright, Rory B. B.
    ADVANCES IN MATHEMATICS, 2012, 230 (02) : 552 - 576
  • [20] Extensions of the vector-valued Hausdorff–Young inequalities
    Oscar Dominguez
    Mark Veraar
    Mathematische Zeitschrift, 2021, 299 : 373 - 425