Positive asymptotically almost periodic solutions for hematopoiesis model

被引:13
作者
Chen, Xin [1 ]
Ding, Hui-Sheng [1 ]
机构
[1] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
关键词
asymptotically almost periodic; almost periodic; hematopoiesis; GLOBAL EXPONENTIAL STABILITY; EXISTENCE;
D O I
10.1186/s13662-016-0799-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the fixed point theory and Lyapunov functional, we establish the existence and stability of asymptotically almost periodic solution to hematopoiesis of the form x'(t) = -a(t)x(t) + Sigma(k)(i=1) b(i)(t)/1+x(n)(t-tau(i)(t))(i) t is an element of R. Unlike many previous related results, we do not assume the condition inf(t is an element of R) a(t) > 0, which is a key assumption in their proofs.
引用
收藏
页数:13
相关论文
共 15 条
[1]   Existence and Exponential Stability of Positive Almost Periodic Solutions for a Model of Hematopoiesis [J].
Alzabut, J. O. ;
Nieto, J. J. ;
Stamov, G. Tr. .
BOUNDARY VALUE PROBLEMS, 2009,
[2]   GLOBAL EXPONENTIAL STABILITY OF POSITIVE ALMOST PERIODIC SOLUTIONS FOR A MODEL OF HEMATOPOIESIS [J].
Chen, Zhibin .
KODAI MATHEMATICAL JOURNAL, 2014, 37 (02) :260-273
[3]  
Corduneanu C., 1989, ALMOST PERIODIC FUNC
[4]  
Diagana T, 2007, PSEUDO ALMOST PERIOD
[5]   Existence of positive almost periodic solutions to a class of hematopoiesis model [J].
Ding, Hui-Sheng ;
Liu, Qing-Long ;
Nieto, Juan J. .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (04) :3289-3297
[6]   Weighted pseudo almost periodic solutions for a class of discrete hematopoiesis model [J].
Ding, Hui-Sheng ;
N'Guerekata, Gaston M. ;
Nieto, Juan J. .
REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (02) :427-443
[7]   New results on the positive almost periodic solutions for a model of hematopoiesis [J].
Liu, Bingwen .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 17 :252-264
[8]   EXISTENCE RESULTS ON POSITIVE PERIODIC SOLUTIONS FOR IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS [J].
Liu, Yuji .
GLASNIK MATEMATICKI, 2011, 46 (01) :149-165
[9]   OSCILLATION AND CHAOS IN PHYSIOLOGICAL CONTROL-SYSTEMS [J].
MACKEY, MC ;
GLASS, L .
SCIENCE, 1977, 197 (4300) :287-288
[10]   Global Exponential Stability of Positive Pseudo-Almost-Periodic Solutions for a Model of Hematopoiesis [J].
Meng, Junxia .
ABSTRACT AND APPLIED ANALYSIS, 2013,