Particle methods for maximum likelihood estimation in latent variable models

被引:39
作者
Johansen, Adam M. [1 ]
Doucet, Arnaud [2 ]
Davy, Manuel [3 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
[2] Univ British Columbia, Dept Stat, Dept Comp Sci, Vancouver, BC V5Z 1M9, Canada
[3] LAGIS UMR 8146, F-59651 Villeneuve Dascq, France
关键词
latent variable models; Markov chain Monte Carlo; maximum likelihood; sequential Monte Carlo; simulated annealing;
D O I
10.1007/s11222-007-9037-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Standard methods for maximum likelihood parameter estimation in latent variable models rely on the Expectation-Maximization algorithm and its Monte Carlo variants. Our approach is different and motivated by similar considerations to simulated annealing; that is we build a sequence of artificial distributions whose support concentrates itself on the set of maximum likelihood estimates. We sample from these distributions using a sequential Monte Carlo approach. We demonstrate state-of-the-art performance for several applications of the proposed approach.
引用
收藏
页码:47 / 57
页数:11
相关论文
共 19 条
[1]   Bayesian-optimal design via interacting particle systems [J].
Amzal, Billy ;
Bois, Frederic Y. ;
Parent, Eric ;
Robert, Christian R. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (474) :773-785
[2]  
[Anonymous], M CARLO STAT METHODS
[3]   Central limit theorem for sequential Monte Carlo methods and its application to bayesian inference [J].
Chopin, N .
ANNALS OF STATISTICS, 2004, 32 (06) :2385-2411
[4]   Sequential Monte Carlo samplers [J].
Del Moral, Pierre ;
Doucet, Arnaud ;
Jasra, Ajay .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 :411-436
[5]  
Del Moral Pierre, 2004, Feynman-Kac formulae: genealogical and interacting particle systems with applications, V88
[6]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[7]   Marginal maximum a posteriori estimation using Markov chain Monte Carlo [J].
Doucet, A ;
Godsill, SJ ;
Robert, CP .
STATISTICS AND COMPUTING, 2002, 12 (01) :77-84
[8]  
Doucet A., 2001, STAT ENG INFORM SCI
[9]   Efficient block sampling strategies for sequential Monte Carlo methods [J].
Doucet, Arnaud ;
Briers, Mark ;
Stephane, Senecal .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (03) :693-711
[10]   BAYESIAN DENSITY-ESTIMATION AND INFERENCE USING MIXTURES [J].
ESCOBAR, MD ;
WEST, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :577-588