Large Emissions of Low-Volatility Siloxanes during Residential Oven Use

被引:22
作者
Katz, Erin F. [1 ,2 ]
Lunderberg, David M. [1 ,2 ]
Brown, Wyatt L. [3 ,4 ]
Day, Douglas A. [3 ,4 ]
Jimenez, Jose L. [3 ,4 ]
Nazaroff, William W. [5 ]
Goldstein, Allen H. [2 ,5 ]
DeCarlo, Peter F. [6 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
[3] Univ Colorado, Dept Chem, Boulder, CO 80309 USA
[4] Univ Colorado, CIRES, Boulder, CO 80309 USA
[5] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA
[6] Johns Hopkins Univ, Dept Environm Hlth & Engn, Baltimore, MD 21218 USA
关键词
METHYL SILOXANES; PERSONAL-CARE; INDOOR AIR; AEROSOL; COOKING; METHYLSILOXANES; MIGRATION; UK;
D O I
10.1021/acs.estlett.1c00433
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Cooking is a source of airborne particles indoors and outdoors. A field study at a residential test house (HOMEChem) included two Thanksgiving-style cooking experiments involving prolonged use of an oven with a light use history. Large enhancements of airborne low-volatility siloxanes were observed by three in situ particle-phase instruments: a high-resolution aerosol mass spectrometer, a semivolatile thermal desorption aerosol gas chromatograph, and an extractive electrospray ionization mass spectrometer. The combination of these instruments permits the quantitative analysis of time-dependent processes and fates over a wide volatility range with high chemical specificity. Cumulatively, 17 and 8.5 mg of bulk siloxane material were emitted indoors and observed in airborne particles during the first and second Thanksgiving experiments, respectively; a peak 5 min average siloxane concentration of 58 mu g/m(3) was measured. Cyclic siloxanes D10-D18 were quantified, and D17 and D16 were the most abundant. We infer that heating of silicone materials inside the oven caused volatilization of cyclic siloxanes and cooler temperatures away from the oven resulted in condensation. Low-volatility siloxanes comprised a surprisingly large fraction of the total emitted submicrometer particle mass: 18% and 9% during the first and second Thanksgiving experiments, respectively. We estimate similar to 75% of the low-volatility siloxane mass was ventilated outdoors.
引用
收藏
页码:519 / 524
页数:6
相关论文
共 40 条
[1]   Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review [J].
Abdullahi, Karimatu L. ;
Delgado-Saborit, Juana Maria ;
Harrison, Roy M. .
ATMOSPHERIC ENVIRONMENT, 2013, 71 :260-294
[2]   Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities [J].
Allan, J. D. ;
Williams, P. I. ;
Morgan, W. T. ;
Martin, C. L. ;
Flynn, M. J. ;
Lee, J. ;
Nemitz, E. ;
Phillips, G. J. ;
Gallagher, M. W. ;
Coe, H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (02) :647-668
[3]  
Annis P. J., 1981, HOME EC RES J, V9, P232
[4]   Decamethylcyclopentasiloxane (D5) [J].
不详 .
TOXICOLOGY AND INDUSTRIAL HEALTH, 2017, 33 (01) :16-27
[5]  
[Anonymous], 1989, EPA400189001C, V2
[6]   MASS-SPECTRAL CHARACTERIZATION AND THERMAL-DECOMPOSITION MECHANISM OF POLY(DIMETHYLSILOXANE) [J].
BALLISTRERI, A ;
GAROZZO, D ;
MONTAUDO, G .
MACROMOLECULES, 1984, 17 (07) :1312-1315
[7]   Real-time organic aerosol chemical speciation in the indoor environment using extractive electrospray ionization mass spectrometry [J].
Brown, Wyatt L. ;
Day, Douglas A. ;
Stark, Harald ;
Pagonis, Demetrios ;
Krechmer, Jordan E. ;
Liu, Xiaoxi ;
Price, Derek J. ;
Katz, Erin F. ;
DeCarlo, Peter F. ;
Masoud, Catherine G. ;
Wang, Dongyu S. ;
Hildebrandt Ruiz, Lea ;
Arata, Caleb ;
Lunderberg, David M. ;
Goldstein, Allen H. ;
Farmer, Delphine K. ;
Vance, Marina E. ;
Jimenez, Jose L. .
INDOOR AIR, 2021, 31 (01) :141-155
[8]   Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer [J].
Canagaratna, M. R. ;
Jayne, J. T. ;
Jimenez, J. L. ;
Allan, J. D. ;
Alfarra, M. R. ;
Zhang, Q. ;
Onasch, T. B. ;
Drewnick, F. ;
Coe, H. ;
Middlebrook, A. ;
Delia, A. ;
Williams, L. R. ;
Trimborn, A. M. ;
Northway, M. J. ;
DeCarlo, P. F. ;
Kolb, C. E. ;
Davidovits, P. ;
Worsnop, D. R. .
MASS SPECTROMETRY REVIEWS, 2007, 26 (02) :185-222
[9]   Volatile methylsiloxanes through wastewater treatment plants - A review of levels and implications [J].
Capela, Daniela ;
Ratola, Nuno ;
Alves, Arminda ;
Homem, Vera .
ENVIRONMENT INTERNATIONAL, 2017, 102 :9-29
[10]   From the shop to the drain - Volatile methylsiloxanes in cosmetics and personal care products [J].
Capela, Daniela ;
Alves, Arminda ;
Homem, Vera ;
Santos, Lucia .
ENVIRONMENT INTERNATIONAL, 2016, 92-93 :50-62