Molecular Dynamics Study of Ion Transport in Polymer Electrolytes of All-Solid-State Li-Ion Batteries

被引:15
|
作者
Mabuchi, Takuya [1 ,2 ]
Nakajima, Koki [2 ,3 ]
Tokumasu, Takashi [2 ]
机构
[1] Tohoku Univ, Frontier Res Inst Interdisciplinary Sci, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Inst Fluid Sci, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[3] Tohoku Univ, Grad Sch Engn, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
关键词
molecular dynamics; polymer electrolyte; lithium-ion battery; salt concentration; hopping mechanism; TRANSFERENCE NUMBER; SALT CONCENTRATION; PROTON TRANSPORT; WEIGHT; CONDUCTIVITY; TEMPERATURE; MODEL;
D O I
10.3390/mi12091012
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Atomistic analysis of the ion transport in polymer electrolytes for all-solid-state Li-ion batteries was performed using molecular dynamics simulations to investigate the relationship between Li-ion transport and polymer morphology. Polyethylene oxide (PEO) and poly(diethylene oxide-alt-oxymethylene), P(2EO-MO), were used as the electrolyte materials, and the effects of salt concentrations and polymer types on the ion transport properties were explored. The size and number of LiTFSI clusters were found to increase with increasing salt concentrations, leading to a decrease in ion diffusivity at high salt concentrations. The Li-ion transport mechanisms were further analyzed by calculating the inter/intra-hopping rate and distance at various ion concentrations in PEO and P(2EO-MO) polymers. While the balance between the rate and distance of inter-hopping was comparable for both PEO and P(2EO-MO), the intra-hopping rate and distance were found to be higher in PEO than in P(2EO-MO), leading to a higher diffusivity in PEO. The results of this study provide insights into the correlation between the nanoscopic structures of ion solvation and the dynamics of Li-ion transport in polymer electrolytes.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Towards N-rich solid polymer electrolytes for Li-ion batteries?
    Artigues, L.
    Deschamps, M.
    Salles, F.
    Chaudoy, V.
    Lapinte, V.
    Monconduit, L.
    MATERIALS ADVANCES, 2023, 4 (22): : 5740 - 5752
  • [32] Poly(Ether-Ester)-Based Solid Polymer Electrolytes with High Li-Ion Transference Number for High Voltage All-Solid-State Lithium Metal Batteries
    Chen, Yang
    Zhang, Yin
    Niu, Jianda
    Xu, Hongli
    Dong, Zhixian
    Xu, Jinbao
    Lei, Caihong
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (05) : 3113 - 3125
  • [33] Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study
    Kim, Sang-Pil
    van Duin, Adri C. T.
    Shenoy, Vivek B.
    JOURNAL OF POWER SOURCES, 2011, 196 (20) : 8590 - 8597
  • [34] Materials advancements in solid-state inorganic electrolytes for highly anticipated all solid Li-ion batteries
    Sarfraz, Nafeesa
    Kanwal, Nosheen
    Ali, Muzahir
    Ali, Kashif
    Hasnain, Ali
    Ashraf, Muhammad
    Ayaz, Muhammad
    Ifthikar, Jerosha
    Ali, Shahid
    Hendi, Abdulmajeed
    Baig, Nadeem
    Ehsan, Muhammad Fahad
    Shah, Syed Shaheen
    Khan, Rizwan
    Khan, Ibrahim
    ENERGY STORAGE MATERIALS, 2024, 71
  • [35] All-Solid-State Lithium-Ion Batteries with Grafted Ceramic Nanoparticles Dispersed in Solid Polymer Electrolytes
    Lago, Nerea
    Garcia-Calvo, Oihane
    Lopez del Amo, Juan Miguel
    Rojo, Teofilo
    Armand, Michel
    CHEMSUSCHEM, 2015, 8 (18) : 3039 - 3043
  • [36] Three-Component Solid Polymer Electrolytes Based on Li-Ion Exchanged Microporous Silicates and an Ionic Liquid for Solid-State Batteries
    Barbosa, Joao C.
    Correia, Daniela M.
    Salado, Manuel
    Goncalves, Renato
    Ferdov, Stanislav
    Bermudez, Veronica de Zea
    Costa, Carlos M.
    Lanceros-Mendez, Senentxu
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (02)
  • [37] Molecular composite electrolytes of polybenzimidazole/polyethylene oxide with enhanced safety and comprehensive performance for all-solid-state lithium ion batteries
    Zhang, Qinghui
    Huang, Hong
    Liu, Tianmeng
    Wang, Yan
    Yu, Junrong
    Hu, Zuming
    POLYMER, 2022, 239
  • [38] A New All-Solid-State Hyperbranched Star Polymer Electrolyte for Lithium Ion Batteries: Synthesis and Electrochemical Properties
    Wang, Ailian
    Xu, Hao
    Zhou, Qian
    Liu, Xu
    Li, Zhengyao
    Gao, Rui
    Wu, Na
    Guo, Yuguo
    Li, Huayi
    Zhang, Liaoyun
    ELECTROCHIMICA ACTA, 2016, 212 : 372 - 379
  • [39] Boron nitride enhanced polymer/salt hybrid electrolytes for all-solid-state lithium ion batteries
    Zhang, Zhenyu
    Antonio, Ruiz Gonzalez
    Choy, Kwang Leong
    JOURNAL OF POWER SOURCES, 2019, 435
  • [40] Multicomponent Covalent Organic Framework Solid Electrolyte Allowing Effective Li-Ion Dissociation and Diffusion for All-Solid-State Batteries
    Lee, Jun-Hyeong
    Lee, Hajin
    Lee, Jaewoo
    Kang, Tae Woog
    Park, Jung Hyun
    Shin, Jae-Hoon
    Lee, Hyunji
    Majhi, Dibyananda
    Lee, Sang Uck
    Kim, Jong-Ho
    ACS NANO, 2023, 17 (17) : 17372 - 17382