COMPLETELY DEGENERATE LOWER-DIMENSIONAL INVARIANT TORI IN REVERSIBLE SYSTEMS

被引:3
作者
Jing, Tianqi [1 ]
Si, Wen [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Completely degeneracy; reversible systems; lower-dimensional invariant tori; KAM iteration; prescribed frequency; PERSISTENCE; STABILITY;
D O I
10.1090/proc/15577
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the persistence of completely degenerate lower-dimensional invariant tori of the following reversible system {(x) over dot = omega + Q(x)z + epsilon P-1(x, z, epsilon), (z) over dot = H(z) + epsilon P-2(x, z, epsilon), where (x, z) = (x, y, u, v) is an element of T-n x R-m x R x R with m >= n + 2, H(z) = (0, v(2p+1) + y(m)(l), uy(m-1)(q))T with y = (y(1), center dot center dot center dot , y(m-1), y(m)), p, q >= 0, l > 0 are integers, the involution G is (x, y, u, v) -> (-x, y,-u, v), Q(x) is a n x m matrix function, omega is a Diophantine frequency, epsilon is a small positive parameter and epsilon P-1, epsilon P-2 are analytic perturbation terms. By the Kolmogorov-ArnoldMoser method, we prove that for sufficiently small epsilon the above reversible system admits lower-dimensional invariant tori with prescribed frequency omega if average of a part of Q(x) is non-singular. This should be the first persistence result of lower-dimensional invariant tori in completely degenerate reversible systems.
引用
收藏
页码:4247 / 4260
页数:14
相关论文
共 21 条
[1]  
[Anonymous], J DIFFER EQUATIONS
[2]  
Arnol'd V.I., 1984, Nonlinear and turbulent processes in physics, Vol. 3 (Kiev, V3, P1161
[3]   Normal linear stability of quasi-periodic tori [J].
Broer, H. W. ;
Hoo, J. ;
Naudot, V. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (02) :355-418
[4]   The quasi-periodic reversible Hopf bifurcation [J].
Broer, Henk W. ;
Ciocci, M. Cristina ;
Hanssmann, Heinz .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (08) :2605-2623
[5]   Quasi-periodic stability of normally resonant tori [J].
Broer, Henk W. ;
Ciocci, M. Cristina ;
Hanssmann, Heinz ;
Vanderbauwhede, Andre .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (03) :309-318
[6]  
Broer HW, 1996, ORDER AMIDST CHAOS, V1645
[7]   Quasi-periodic bifurcations in reversible systems [J].
Hanssmann, Heinz .
REGULAR & CHAOTIC DYNAMICS, 2011, 16 (1-2) :51-60
[8]   DEGENERATE LOWER DIMENSIONAL INVARIANT TORT IN REVERSIBLE SYSTEM [J].
Hu, Shengqing ;
Liu, Bin .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (08) :3735-3763
[9]   On lower dimensional invariant tori in reversible systems [J].
Liu, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 176 (01) :158-194
[10]  
Sevryuk M. B., 1989, T SEM IG PETROVSKOGO, V14, P109, DOI 10.1007/BF01094996