Asymptotic properties of the maximum-likelihood estimator in zero-inflated binomial regression

被引:15
作者
Diallo, Alpha Oumar [1 ,2 ]
Diop, Aliou [1 ]
Dupuy, Jean-Francois [2 ]
机构
[1] Gaston Berger Univ, LERSTAD, CEA MITIC, St Louis, Senegal
[2] IRMAR INSA, Dept Math, Rennes, France
关键词
Asymptotic normality; consistency; count data; excess of zeros; simulations; COUNT DATA; POISSON; MODELS;
D O I
10.1080/03610926.2016.1222437
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The zero-inflated binomial (ZIB) regression model was proposed to account for excess zeros in binomial regression. Since then, the model has been applied in various fields, such as ecology and epidemiology. In these applications, maximum-likelihood estimation (MLE) is used to derive parameter estimates. However, theoretical properties of the MLE in ZIB regression have not yet been rigorously established. The current paper fills this gap and thus provides a rigorous basis for applying the model. Consistency and asymptotic normality of the MLE in ZIB regression are proved. A consistent estimator of the asymptotic variance-covariance matrix of the MLE is also provided. Finite-sample behavior of the estimator is assessed via simulations. Finally, an analysis of a data set in the field of health economics illustrates the paper.
引用
收藏
页码:9930 / 9948
页数:19
相关论文
共 23 条
[1]  
Deb P, 1997, J APPL ECONOMET, V12, P313, DOI 10.1002/(SICI)1099-1255(199705)12:3<313::AID-JAE440>3.0.CO
[2]  
2-G
[3]   On estimation of the Poisson parameter in zero-modified Poisson models [J].
Dietz, E ;
Böhning, D .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2000, 34 (04) :441-459
[4]   A MULTIVARIATE CENTRAL LIMIT THEOREM FOR RANDOM LINEAR VECTOR FORMS [J].
EICKER, F .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (06) :1825-&
[5]   On estimation and influence diagnostics for zero-inflated negative binomial regression models [J].
Garay, Aldo M. ;
Hashimoto, Elizabeth M. ;
Ortega, Edwin M. M. ;
Lachos, Victor H. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (03) :1304-1318
[6]   Modelling count data with excessive zeros: The need for class prediction in zero-inflated models and the issue of data generation in choosing between zero-inflated and generic mixture models for dental caries data [J].
Gilthorpe, Mark S. ;
Frydenberg, Morten ;
Cheng, Yaping ;
Baelum, Vibeke .
STATISTICS IN MEDICINE, 2009, 28 (28) :3539-3553
[7]   ASYMPTOTIC PROPERTIES OF THE MAXIMUM-LIKELIHOOD ESTIMATOR IN DICHOTOMOUS LOGIT-MODELS [J].
GOURIEROUX, C ;
MONFORT, A .
JOURNAL OF ECONOMETRICS, 1981, 17 (01) :83-97
[8]   Score tests for heterogeneity and overdispersion in zero-inflated Poisson and binomial regression models [J].
Hall, DB ;
Berenhaut, KS .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2002, 30 (03) :415-430
[9]   Zero-inflated Poisson and binomial regression with random effects: A case study [J].
Hall, DB .
BIOMETRICS, 2000, 56 (04) :1030-1039
[10]   Sieve maximum likelihood estimation for doubly semiparametric zero-inflated Poisson models [J].
He, Xuming ;
Xue, Hongqi ;
Shi, Ning-Zhong .
JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (09) :2026-2038