Supervised Temporal Autoencoder for Stock Return Time-series Forecasting

被引:3
作者
Wong, Steven Y. K. [1 ]
Chan, Jennifer S. K. [2 ]
Azizi, Lamiae [2 ]
Xu, Richard Y. D. [1 ]
机构
[1] Univ Technol Sydney, Sch Elect & Data Engn, Sydney, NSW, Australia
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW, Australia
来源
2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021) | 2021年
关键词
return prediction; autoencoder; convolutional neural network; NEURAL-NETWORKS;
D O I
10.1109/COMPSAC51774.2021.00259
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Financial markets are noisy learning environments. We propose an approach that regularizes the Temporal Convolutional Network using a supervised autoencoder, which we term the Supervised Temporal Autoencoder (STAE). We show that the addition of the auxiliary reconstruction task is beneficial to the primary supervised learning task in the context of stock return time-series forecasting. We also show that STAE is able to learn features directly from transformed price series, alleviating the need for handcrafted features. The autoencoder also improves interpretability as users can observe output of the decoder and inspect features retained by the network.
引用
收藏
页码:1735 / 1741
页数:7
相关论文
共 50 条
  • [31] Hybrid Time-Series Framework for Daily-Based PM2.5 Forecasting
    Chiang, Pei-Wen
    Horng, Shi-Jinn
    IEEE ACCESS, 2021, 9 : 104162 - 104176
  • [32] Multilayer Stock Forecasting Model Using Fuzzy Time Series
    Sadaei, Hossein Javedani
    Lee, Muhammad Hisyam
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [33] Temporal pattern attention for multivariate time series forecasting
    Shun-Yao Shih
    Fan-Keng Sun
    Hung-yi Lee
    Machine Learning, 2019, 108 : 1421 - 1441
  • [34] Temporal pattern attention for multivariate time series forecasting
    Shih, Shun-Yao
    Sun, Fan-Keng
    Lee, Hung-yi
    MACHINE LEARNING, 2019, 108 (8-9) : 1421 - 1441
  • [35] Autoencoder-Based Iterative Modeling and Multivariate Time-Series Subsequence Clustering Algorithm
    Kohne, Jonas
    Henning, Lars
    Guhmann, Clemens
    IEEE ACCESS, 2023, 11 : 18868 - 18886
  • [36] DFNet: Decomposition fusion model for long sequence time-series forecasting
    Zhang, Fan
    Guo, Tiantian
    Wang, Hua
    KNOWLEDGE-BASED SYSTEMS, 2023, 277
  • [37] FUZZY NEURAL NETWORKS FOR TIME-SERIES FORECASTING OF ELECTRIC-LOAD
    DASH, PK
    RAMAKRISHNA, G
    LIEW, AC
    RAHMAN, S
    IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 1995, 142 (05) : 535 - 544
  • [38] Humidity forecasting in a potato plantation using time-series neural models
    Yartu, Mercedes
    Cambra, Carlos
    Navarro, Milagros
    Rad, Carlos
    Arroyo, Angel
    Herrero, Alvaro
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 59
  • [39] TIME-SERIES PREDICTIONS WITH NEURAL NETS - APPLICATION TO AIRBORNE POLLEN FORECASTING
    ARIZMENDI, CM
    SANCHEZ, JR
    RAMOS, NE
    RAMOS, GI
    INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 1993, 37 (03) : 139 - 144
  • [40] Sparse Gaussian Process Regression for Landslide Displacement Time-Series Forecasting
    Yang, Weiqi
    Feng, Yuran
    Wan, Jian
    Wang, Lingling
    FRONTIERS IN EARTH SCIENCE, 2022, 10