Supervised Temporal Autoencoder for Stock Return Time-series Forecasting

被引:3
作者
Wong, Steven Y. K. [1 ]
Chan, Jennifer S. K. [2 ]
Azizi, Lamiae [2 ]
Xu, Richard Y. D. [1 ]
机构
[1] Univ Technol Sydney, Sch Elect & Data Engn, Sydney, NSW, Australia
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW, Australia
来源
2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021) | 2021年
关键词
return prediction; autoencoder; convolutional neural network; NEURAL-NETWORKS;
D O I
10.1109/COMPSAC51774.2021.00259
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Financial markets are noisy learning environments. We propose an approach that regularizes the Temporal Convolutional Network using a supervised autoencoder, which we term the Supervised Temporal Autoencoder (STAE). We show that the addition of the auxiliary reconstruction task is beneficial to the primary supervised learning task in the context of stock return time-series forecasting. We also show that STAE is able to learn features directly from transformed price series, alleviating the need for handcrafted features. The autoencoder also improves interpretability as users can observe output of the decoder and inspect features retained by the network.
引用
收藏
页码:1735 / 1741
页数:7
相关论文
共 50 条
  • [21] Temporal convolutional autoencoder for unsupervised anomaly detection in time series
    Thill, Markus
    Konen, Wolfgang
    Wang, Hao
    Back, Thomas
    APPLIED SOFT COMPUTING, 2021, 112
  • [22] PFformer: A Time-Series Forecasting Model for Short-Term Precipitation Forecasting
    Xu, Luwen
    Qin, Jiwei
    Sun, Dezhi
    Liao, Yuanyuan
    Zheng, Jiong
    IEEE ACCESS, 2024, 12 : 130948 - 130961
  • [23] Temporal Attention Signatures for Interpretable Time-Series Prediction
    Katrompas, Alexander
    Metsis, Vangelis
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VI, 2023, 14259 : 268 - 280
  • [24] Long sequence time-series forecasting with deep learning: A survey
    Chen, Zonglei
    Ma, Minbo
    Li, Tianrui
    Wang, Hongjun
    Li, Chongshou
    INFORMATION FUSION, 2023, 97
  • [25] Ensemble Deep Learning Models for Forecasting Cryptocurrency Time-Series
    Livieris, Ioannis E.
    Pintelas, Emmanuel
    Stavroyiannis, Stavros
    Pintelas, Panagiotis
    ALGORITHMS, 2020, 13 (05)
  • [26] Nonlinear time-series forecasting: A fuzzy-neural approach
    Nie, JH
    NEUROCOMPUTING, 1997, 16 (01) : 63 - 76
  • [27] Forecasting ocean wave energy: Tests of time-series models
    Reikard, Gordon
    OCEAN ENGINEERING, 2009, 36 (05) : 348 - 356
  • [28] FORECASTING THE BEHAVIOR OF MULTIVARIATE TIME-SERIES USING NEURAL NETWORKS
    CHAKRABORTY, K
    MEHROTRA, K
    MOHAN, CK
    RANKA, S
    NEURAL NETWORKS, 1992, 5 (06) : 961 - 970
  • [29] Time-series forecasting of mortality rates using deep learning
    Perla, Francesca
    Richman, Ronald
    Scognamiglio, Salvatore
    Wuthrich, Mario, V
    SCANDINAVIAN ACTUARIAL JOURNAL, 2021, 2021 (07) : 572 - 598
  • [30] Forecasting and recombining time-series components by using neural networks
    Hansen, JV
    Nelson, RD
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2003, 54 (03) : 307 - 317