Supervised Temporal Autoencoder for Stock Return Time-series Forecasting

被引:3
作者
Wong, Steven Y. K. [1 ]
Chan, Jennifer S. K. [2 ]
Azizi, Lamiae [2 ]
Xu, Richard Y. D. [1 ]
机构
[1] Univ Technol Sydney, Sch Elect & Data Engn, Sydney, NSW, Australia
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW, Australia
来源
2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021) | 2021年
关键词
return prediction; autoencoder; convolutional neural network; NEURAL-NETWORKS;
D O I
10.1109/COMPSAC51774.2021.00259
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Financial markets are noisy learning environments. We propose an approach that regularizes the Temporal Convolutional Network using a supervised autoencoder, which we term the Supervised Temporal Autoencoder (STAE). We show that the addition of the auxiliary reconstruction task is beneficial to the primary supervised learning task in the context of stock return time-series forecasting. We also show that STAE is able to learn features directly from transformed price series, alleviating the need for handcrafted features. The autoencoder also improves interpretability as users can observe output of the decoder and inspect features retained by the network.
引用
收藏
页码:1735 / 1741
页数:7
相关论文
共 50 条
  • [11] FORECASTING ENROLLMENTS WITH FUZZY TIME-SERIES .2.
    SONG, Q
    CHISSOM, BS
    FUZZY SETS AND SYSTEMS, 1994, 62 (01) : 1 - 8
  • [12] Adaptive neural network model for time-series forecasting
    Wong, W. K.
    Xia, Min
    Chu, W. C.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 207 (02) : 807 - 816
  • [13] An investigation of neural networks for linear time-series forecasting
    Zhang, GP
    COMPUTERS & OPERATIONS RESEARCH, 2001, 28 (12) : 1183 - 1202
  • [14] A hybrid intelligent system for financial time-series forecasting
    Thomaidis, Nikos S.
    Dounias, George
    ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS, 2008, 16 (04): : 193 - 213
  • [15] Spatiotemporal information conversion machine for time-series forecasting
    Peng, Hao
    Chen, Pei
    Liu, Rui
    Chen, Luonan
    FUNDAMENTAL RESEARCH, 2024, 4 (06): : 1674 - 1687
  • [16] Time-series forecasting of mortality rates using transformer
    Wang, Jun
    Wen, Lihong
    Xiao, Lu
    Wang, Chaojie
    SCANDINAVIAN ACTUARIAL JOURNAL, 2024, 2024 (02) : 109 - 123
  • [17] MTSMAE: Masked Autoencoders for Multivariate Time-Series Forecasting
    Tang, Peiwang
    Zhang, Xianchao
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 982 - 989
  • [18] RAT-CC: A Recurrent Autoencoder for Time-Series Compression and Classification
    Chiarot, Giacomo
    Vascon, Sebastiano
    Silvestri, Claudio
    Ochoa, Idoia
    IEEE ACCESS, 2025, 13 : 51693 - 51701
  • [19] Multiscale Wavelet Graph AutoEncoder for Multivariate Time-Series Anomaly Detection
    Wang, Jing
    Shao, Shikuan
    Bai, Yunfei
    Deng, Jiaoxue
    Lin, Youfang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [20] Multiscale Wavelet Graph AutoEncoder for Multivariate Time-Series Anomaly Detection
    Wang, Jing
    Shao, Shikuan
    Bai, Yunfei
    Deng, Jiaoxue
    Lin, Youfang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72