Valuation rings in ore extensions

被引:11
作者
Brungs, HH [1 ]
Schröder, M
机构
[1] Univ Alberta, Edmonton, AB T6G 2G1, Canada
[2] Univ Duisburg Gesamthsch, D-47048 Duisburg, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/jabr.2000.8484
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Extensions of valuation rings V of a skew field K are considered in the skew field F = K(x, sigma) for sigma a monomorphism of K. At least two such extensions exist if a is an automorphism, but no extension may exist if a is a monomorphism only. There exist extensions R-(a) of V in F with xR((a)) = aR((a)) for every non-zero a in K if and only if V is invariant and a is compatible with V. (C) 2001 Academic Press.
引用
收藏
页码:665 / 680
页数:16
相关论文
共 15 条
[1]   MINIMAL PAIRS OF DEFINITION OF A RESIDUAL TRANSCENDENTAL EXTENSION OF A VALUATION [J].
ALEXANDRU, V ;
POPESCU, N ;
ZAHARESCU, A .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1990, 30 (02) :207-225
[2]  
[Anonymous], 1972, ELEMENTS MATH COMMUT
[3]   VALUATIONS, PRIMES AND IRREDUCIBILITY IN POLYNOMIAL RINGS AND RATIONAL FUNCTION FIELDS [J].
BROWN, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 174 (447) :451-488
[4]   Prime segments of skew fields [J].
Brungs, HH ;
Schroder, M .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1995, 47 (06) :1148-1176
[5]   VALUATION RINGS IN FINITE-DIMENSIONAL DIVISION-ALGEBRAS [J].
BRUNGS, HH ;
GRATER, J .
JOURNAL OF ALGEBRA, 1989, 120 (01) :90-99
[6]   EXTENSIONS OF CHAIN RINGS [J].
BRUNGS, HH ;
TORNER, G .
MATHEMATISCHE ZEITSCHRIFT, 1984, 185 (01) :93-104
[7]  
Cohn PM., 1985, Free Rings and their Relations, V2
[8]  
JACOBSON N, 1996, FINITE DIMENSIONAL D
[9]  
KHANDUJA SK, 1993, P EDINBURGH MATH SOC, V37, P13
[10]  
MacLane S, 1936, T AM MATH SOC, V40, P363