Antipodality properties of finite sets in Euclidean space

被引:19
|
作者
Martini, H [1 ]
Soltan, V
机构
[1] TU Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[2] George Mason Univ, Dept Math Sci, Fairfax, VA 22030 USA
关键词
affine diameter; metric diameter; double normal; antipodal points; finite set; convex polytope;
D O I
10.1016/j.disc.2004.09.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a survey of known results and still open problems on antipodal properties of finite sets in Euclidean space. The exposition follows historical lines and takes into consideration both metric and affine aspects. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:221 / 228
页数:8
相关论文
共 50 条
  • [21] A Linear Separability Criterion for Sets of Euclidean Space
    Z. R. Gabidullina
    Journal of Optimization Theory and Applications, 2013, 158 : 145 - 171
  • [22] A Sampling Theory for Compact Sets in Euclidean Space
    Chazal, Frederic
    Cohen-Steiner, David
    Lieutier, Andre
    DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 41 (03) : 461 - 479
  • [23] Local groups in Delone sets in the Euclidean space
    Dolbilin, Nikolay
    Shtogrin, Mikhail
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : 452 - 458
  • [24] A Linear Separability Criterion for Sets of Euclidean Space
    Gabidullina, Z. R.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 158 (01) : 145 - 171
  • [25] Realizing finite groups in Euclidean space
    Albertson, MO
    Boutin, DL
    JOURNAL OF ALGEBRA, 2000, 225 (02) : 947 - 956
  • [26] Concerning zero-dimensional sets in euclidean space
    Wilder, R. L.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1929, 31 (1-4) : 345 - 359
  • [27] FAT AND THIN SETS FOR DOUBLING MEASURES IN EUCLIDEAN SPACE
    Wang, Wen
    Wen, Shengyou
    Wen, Zhi-Ying
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (02) : 535 - 546
  • [28] Optimization of the Hausdorff distance between sets in Euclidean space
    V. N. Ushakov
    A. S. Lakhtin
    P. D. Lebedev
    Proceedings of the Steklov Institute of Mathematics, 2015, 291 : 222 - 238
  • [29] Theorems on the separability of alpha-sets in Euclidean space
    Ushakov, V. N.
    Uspenskii, A. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (02): : 277 - 291
  • [30] Decomposing Euclidean space with a small number of smooth sets
    Steprans, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (04) : 1461 - 1480