Antipodality properties of finite sets in Euclidean space

被引:19
|
作者
Martini, H [1 ]
Soltan, V
机构
[1] TU Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[2] George Mason Univ, Dept Math Sci, Fairfax, VA 22030 USA
关键词
affine diameter; metric diameter; double normal; antipodal points; finite set; convex polytope;
D O I
10.1016/j.disc.2004.09.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a survey of known results and still open problems on antipodal properties of finite sets in Euclidean space. The exposition follows historical lines and takes into consideration both metric and affine aspects. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:221 / 228
页数:8
相关论文
共 50 条
  • [1] Antipodality in hyperbolic space
    Bezdek, Karoly
    Naszodi, Marton
    Oliveros, Deborah
    JOURNAL OF GEOMETRY, 2006, 85 (1-2) : 22 - 31
  • [2] Alpha Sets in Finite-dimensional Euclidean Spaces and Their Properties
    Ushakov, Vladimir N.
    Uspenskii, Aleksandr A.
    Ershov, Aleksandr A.
    2017 CONSTRUCTIVE NONSMOOTH ANALYSIS AND RELATED TOPICS (DEDICATED TO THE MEMORY OF V.F. DEMYANOV) (CNSA), 2017, : 338 - 341
  • [3] IMBEDDING OF SETS INTO EUCLIDEAN SPACE
    SHTANKO, M
    DOKLADY AKADEMII NAUK SSSR, 1969, 186 (06): : 1269 - &
  • [4] Properties and Applications of the Distance Functions on Open Sets of the Euclidean Space
    F. G. Avkhadiev
    Russian Mathematics, 2020, 64 : 75 - 79
  • [5] Properties and Applications of the Distance Functions on Open Sets of the Euclidean Space
    Avkhadiev, F. G.
    RUSSIAN MATHEMATICS, 2020, 64 (04) : 75 - 79
  • [6] Theorems on the Separability of α-Sets in Euclidean Space
    Ushakov, V. N.
    Uspenskii, A. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 299 : 231 - 245
  • [7] 2 UNIVERSAL SETS IN A EUCLIDEAN SPACE
    BOTHE, HG
    MATHEMATISCHE NACHRICHTEN, 1969, 39 (1-3) : 117 - &
  • [8] Theorems on the Separability of α-Sets in Euclidean Space
    V. N. Ushakov
    A. A. Uspenskii
    Proceedings of the Steklov Institute of Mathematics, 2017, 299 : 231 - 245
  • [9] Model sets with Euclidean internal space
    Cerda, Mauricio Allendes
    Coronel, Daniel
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (12) : 3897 - 3922
  • [10] On the imbedding of metric sets in Euclidean space
    Wilson, WA
    AMERICAN JOURNAL OF MATHEMATICS, 1935, 57 : 322 - 326