VAST (Volume Annotation and Segmentation Tool): Efficient Manual and Semi-Automatic Labeling of Large 3D Image Stacks

被引:109
|
作者
Berger, Daniel R. [1 ]
Seung, H. Sebastian [2 ]
Lichtman, Jeff W. [1 ]
机构
[1] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[2] Princeton Univ, Dept Comp Sci, Princeton Neurosci Inst, Princeton, NJ 08544 USA
基金
美国国家卫生研究院;
关键词
connectomics; segmentation; visualization; serial section electron microscopy; CLEM; proofreading; TrakEM2; voxel; SCANNING-ELECTRON-MICROSCOPY; DIRECTION-SELECTIVITY; WIRING SPECIFICITY; HIGH-RESOLUTION; CIRCUIT; NETWORK; RECONSTRUCTION; ANATOMY; SYSTEM;
D O I
10.3389/fncir.2018.00088
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Recent developments in serial-section electron microscopy allow the efficient generation of very large image data sets but analyzing such data poses challenges for software tools. Here we introduce Volume Annotation and Segmentation Tool (VAST), a freely available utility program for generating and editing annotations and segmentations of large volumetric image (voxel) data sets. It provides a simple yet powerful user interface for real-time exploration and analysis of large data sets even in the Petabyte range.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] SEMI-AUTOMATIC 2D TO 3D IMAGE CONVERSION USING SCALE-SPACE RANDOM WALKS AND A GRAPH CUTS BASED DEPTH PRIOR
    Phan, Raymond
    Rzeszutek, Richard
    Androutsos, Dimitrios
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 865 - 868
  • [32] Efficient 3D volume segmentation of MR images by a modified deterministic annealing approach
    Ge, ZY
    Mitra, S
    MEDICAL IMAGING: 2001: IMAGE PROCESSING, PTS 1-3, 2001, 4322 : 1439 - 1448
  • [33] Semi-automatic central-chest lymph-node definition from 3D MDCT images
    Lu, Kongkuo
    Higgins, William E.
    MEDICAL IMAGING 2010: COMPUTER - AIDED DIAGNOSIS, 2010, 7624
  • [34] Fast Segmentation of Stained Nuclei in Terabyte-Scale, Time Resolved 3D Microscopy Image Stacks
    Stegmaier, Johannes
    Otte, Jens C.
    Kobitski, Andrei
    Bartschat, Andreas
    Garcia, Ariel
    Nienhaus, G. Ulrich
    Straehle, Uwe
    Mikut, Ralf
    PLOS ONE, 2014, 9 (02):
  • [35] BLASTOMERE SEGMENTATION AND 3D MORPHOLOGY MEASUREMENTS OF EARLY EMBRYOS FROM HOFFMAN MODULATION CONTRAST IMAGE STACKS
    Giusti, Alessandro
    Corani, Giorgio
    Gambardella, Luca
    Magli, Cristina
    Gianaroli, Luca
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 1261 - 1264
  • [36] Facilitating coronary artery evaluation in MDCT using a 3D automatic vessel segmentation tool
    Khan, M. Fawad
    Wesarg, Stefan
    Gurung, Jessen
    Dogan, Selami
    Maataoui, Adel
    Brehmer, Boris
    Herzog, Christopher
    Ackermann, Hanns
    Assmus, Birgit
    Vogl, Thomas J.
    EUROPEAN RADIOLOGY, 2006, 16 (08) : 1789 - 1795
  • [37] Efficient 3D medical image segmentation algorithm over a secured multimedia network
    Al-Zu'bi, Shadi
    Hawashin, Bilal
    Mughaid, Ala
    Baker, Thar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (11) : 16887 - 16905
  • [38] High-fidelity Image Restoration of Large 3D Electron Microscopy Volume
    Kreinin, Yuri
    Gunn, Pat
    Chklovskii, Dmitri
    Wu, Jingpeng
    MICROSCOPY AND MICROANALYSIS, 2024, 30 (05) : 889 - 902
  • [39] Automatic 3D Prostate Image Segmentation via Patch-based Density Constraints Clustering
    Yao, Yao
    Gou, Shuiping
    Guang, Yang
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON VISION, IMAGE AND SIGNAL PROCESSING (ICVISP 2018), 2018,
  • [40] Semi-automatic 3D morphological reconstruction of neurons with densely branching morphology: Application to retinal All amacrine cells imaged with multi -photon excitation microscopy
    Zandt, Bas-Jan
    Losnegard, Are
    Hodneland, Erlend
    Veruki, Margaret Lin
    Lundervold, Arvid
    Hartveit, Espen
    JOURNAL OF NEUROSCIENCE METHODS, 2017, 279 : 101 - 118