Normalising Flows and Nonlinear Normal Modes

被引:1
|
作者
Bull, L. A. [1 ]
Gardner, P. A. [1 ]
Dervilis, N. [1 ]
Worden, K. [1 ]
机构
[1] Univ Sheffield, Dept Mech Engn, Dynam Res Grp, Mappin St, Sheffield S1 3JD, S Yorkshire, England
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 07期
基金
英国工程与自然科学研究理事会;
关键词
Nonlinear modal analysis; nonlinear normal modes; machine learning; normalising flows;
D O I
10.1016/j.ifacol.2021.08.435
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the context of dynamic decoupling problems, engineering dynamics has long held modal analysis as an exemplar. The method allows the exact decomposition of linear multi-degree-of-freedom (MDOF) systems into single-degree-of-freedom (SDOF) oscillators, thus simplifying complex dynamic problems considerably. However, modal analysis is very much a linear theory; if applied to nonlinear systems, the decoupling property (among others) is lost. This unfortunate situation has led to numerous attempts to formulate workable nonlinear versions of the theory. The current paper extends previous work by the authors in using machine learning methods to learn nonlinear modal transformations on measured data, based on the premise that any latent modal variables should be statistically independent. Unlike previous work, the transformation here exploits the recent development of normalising flows in constructing the required transformations. The new approach is shown to overcome a number of the problems in the original approach when demonstrated on a simulated nonlinear system. Copyright (C) 2021 The Authors.
引用
收藏
页码:655 / 660
页数:6
相关论文
共 50 条
  • [1] ON THE RESONANT NONLINEAR NORMAL MODES
    Zhang Xinhua
    PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 1645 - 1648
  • [2] Control of neural transport for normalising flows
    Ruiz-Balet, Domenec
    Zuazua, Enrique
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 181 : 58 - 90
  • [3] Importance nested sampling with normalising flows
    Williams, Michael J.
    Veitch, John
    Messenger, Chris
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (03):
  • [4] USAGE OF NONLINEAR NORMAL MODES IN DYNAMICS
    Byrtus, M.
    ENGINEERING MECHANICS 2011, 2011, : 71 - 74
  • [5] Stability of strongly nonlinear normal modes
    Recktenwald, Geoffrey
    Rand, Richard
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (07) : 1128 - 1132
  • [6] Identifying the significance of nonlinear normal modes
    Hill, T. L.
    Cammarano, A.
    Neild, S. A.
    Barton, D. A. W.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2199):
  • [7] Nonlinear normal modes of a cantilever beam
    Nayfeh, AH
    Chin, C
    Nayfeh, SA
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 1995, 117 (04): : 477 - 481
  • [8] Nonlinear normal modes for damage detection
    Lacarbonara, Walter
    Carboni, Biagio
    Quaranta, Giuseppe
    MECCANICA, 2016, 51 (11) : 2629 - 2645
  • [9] Nonlinear normal modes in pendulum systems
    Klimenko, A. A.
    Mikhlin, Y. V.
    Awrejcewicz, J.
    NONLINEAR DYNAMICS, 2012, 70 (01) : 797 - 813
  • [10] Nonlinear normal modes in pendulum systems
    A. A. Klimenko
    Y. V. Mikhlin
    J. Awrejcewicz
    Nonlinear Dynamics, 2012, 70 : 797 - 813