Simultaneously recovering affine motion and defocus blur using moments

被引:0
|
作者
Zhang, YN [1 ]
Wen, CY [1 ]
Zhang, Y [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
来源
15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING | 2000年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In practical computer vision system, there are situations where displacement of an image is accompanied by a defocus blur. Since depth can be estimated from the degree of blur, in this paper we propose a method to get the blur parameter and simultaneously affine transformation parameters. Firstly, we introduce a method to get the motion parameters from the original image and the affine transformed and simultaneously blurred image(second image). Then we use these parameters to construct affine transformed image. The last step is to get the blur parameters from the constructed image and the second image. The effectiveness of the proposed method is demonstrated by experimental results.
引用
收藏
页码:873 / 876
页数:4
相关论文
共 50 条
  • [41] Depth Map Estimation Using Defocus and Motion Cues
    Kumar, Himanshu
    Yadav, Ajeet Singh
    Gupta, Sumana
    Venkatesh, K. S.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (05) : 1365 - 1379
  • [42] Deep Depth from Defocus: How Can Defocus Blur Improve 3D Estimation Using Dense Neural Networks?
    Carvalho, Marcela
    Le Saux, Bertrand
    Trouve-Peloux, Pauline
    Almansa, Andres
    Champagnat, Frederic
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT I, 2019, 11129 : 307 - 323
  • [43] Real-Time motion blur using triangular motion paths
    Hong M.
    Oh K.
    Journal of Information Processing Systems, 2017, 13 (04): : 818 - 833
  • [44] RETRACTED: Using a Blur Metric to Estimate Linear Motion Blur Parameters (Retracted Article)
    Askari Javaran, Taiebeh
    Hassanpour, Hamid
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [45] Motion blur minimization using human vision models
    Jhang, Zih-Jian
    Wang, Sheng-Bo
    IDMC'07: PROCEEDINGS OF THE INTERNATIONAL DISPLAY MANUFACTURING CONFERENCE 2007, 2007, : 861 - 864
  • [46] Photosequencing of Motion Blur using Short and Long Exposures
    Rengarajan, Vijay
    Zhao, Shuo
    Zhen, Ruiwen
    Glotzbach, John
    Sheikh, Hamid
    Sankaranarayanan, Aswin C.
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 2150 - 2159
  • [47] Combined Invariants to Similarity Transformation and to Blur Using Orthogonal Zernike Moments
    Chen, Beijing
    Shu, Huazhong
    Zhang, Hui
    Coatrieux, Gouenou
    Luo, Limin
    Coatrieux, Jean Louis
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (02) : 345 - 360
  • [48] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects
    Rozumnyi, Denys
    Oswald, Martin R.
    Ferrari, Vittorio
    Pollefeys, Marc
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [49] Blur robust optical flow using motion channel
    Li, Wenbin
    Chen, Yang
    Lee, JeeHang
    Ren, Gang
    Cosker, Darren
    NEUROCOMPUTING, 2017, 220 : 170 - 180
  • [50] Derivation of blur-invariant features using orthogonal Legendre moments
    Wee, C.-Y.
    Paramesran, R.
    IET COMPUTER VISION, 2007, 1 (02) : 66 - 77