Predicting the tumor response to chemoradiotherapy for rectal cancer: Model development and external validation using MRI radiomics

被引:74
作者
Bulens, Philippe [1 ]
Couwenberg, Alice [2 ]
Intven, Martijn [2 ]
Debucquoy, Annelies [1 ]
Vandecaveye, Vincent [3 ]
Van Cutsem, Eric [4 ]
D'Hoore, Andre [5 ]
Wolthuis, Albert [5 ]
Mukherjee, Pritam [6 ]
Gevaert, Olivier [6 ]
Haustermans, Karin [1 ]
机构
[1] Univ Hosp Leuven, Dept Radiat Oncol, Herestr 49, Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Dept Radiat Oncol, Utrecht, Netherlands
[3] Univ Hosp Leuven, Dept Radiol, Leuven, Belgium
[4] Univ Hosp Leuven, Dept Digest Oncol, Leuven, Belgium
[5] Univ Hosp Leuven, Dept Abdominal Surg, Leuven, Belgium
[6] Stanford Univ, Stanford Ctr Biomed Informat Res, Dept Med & Biomed Data Sci, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
Rectal cancer; Magnetic resonance imaging; Radiomics; Response prediction; PATHOLOGICAL COMPLETE RESPONSE; TOTAL MESORECTAL EXCISION; DIFFUSION-WEIGHTED MRI; NEOADJUVANT CHEMORADIOTHERAPY; CHEMORADIATION;
D O I
10.1016/j.radonc.2019.07.033
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: In well-responding patients to chemoradiotherapy for locally advanced rectal cancer (LARC), a watch-and-wait strategy can be considered. To implement organ-sparing strategies, accurate patient selection is needed. We investigate the use of MRI-based radiomics models to predict tumor response to improve patient selection. Materials and methods: Models were developed in a cohort of 70 patients and validated in an external cohort of 55 patients. Patients received chemoradiation followed by surgery and underwent T2-weighted and diffusion-weighted MRI (DW-MRI) before and after chemoradiation. The outcome measure was (near-)complete pathological tumor response (ypT0-1N0). Tumor segmentation was done on T2-images and transferred to b800-images and ADC maps, after which quantitative and four semantic features were extracted. We combined features using principal component analysis and built models using LASSO regression analysis. The best models based on precision and performance were selected for validation. Results: 21/70 patients (30%) achieved ypT0-1N0 in the development cohort versus 13/55 patients (24%) in the validation cohort. Three models (t2_dwi_pre_post, semantic_dwi_adc_pre, semantic_dwi_post) were identified with an area-under-the-curve (AUC) of 0.83 (95% CI 0.70-0.95), 0.86 (95% CI 0.75-0.98) and 0.84 (95% CI 0.75-0.94) respectively. Two models (t2_dwi_pre_post, semantic_dwi_post) validated well in the external cohort with AUCs of 0.83 (95% CI 0.70-0.95) and 0.86 (95% CI 0.76-0.97). These models however did not outperform a previously established four-feature semantic model. Conclusion: Prediction models based on MRI radiomics non-invasively predict tumor response after chemoradiation for rectal cancer and can be used as an additional tool to identify patients eligible for an organ-preserving treatment. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:246 / 252
页数:7
相关论文
共 37 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Radiation Dose-Response Model for Locally Advanced Rectal Cancer After Preoperative Chemoradiation Therapy [J].
Appelt, Ane L. ;
Ploen, John ;
Vogelius, Ivan R. ;
Bentzen, Soren M. ;
Jakobsen, Anders .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2013, 85 (01) :74-80
[3]   Noninvasive radiomics signature based on quantitative analysis of computed tomography images as a surrogate for microvascular invasion in hepatocellular carcinoma: A pilot study [J].
Bakr, Shaimaa ;
Echegaray, Sebastian ;
Shah, Rajesh ;
Kamaya, Aya ;
Louie, John ;
Napel, Sandy ;
Kothary, Nishita ;
Gevaert, Olivier .
Journal of Medical Imaging, 2017, 4 (04)
[4]   Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer [J].
Bibault, Jean-Emmanuel ;
Giraud, Philippe ;
Durdux, Catherine ;
Taieb, Julien ;
Berger, Anne ;
Coriat, Romain ;
Chaussade, Stanislas ;
Dousset, Bertrand ;
Nordlinger, Bernard ;
Burgun, Anita .
SCIENTIFIC REPORTS, 2018, 8
[5]   Development and validation of an MRI-based model to predict response to chemoradiotherapy for rectal cancer [J].
Bulens, Philippe ;
Couwenberg, Alice ;
Haustermans, Karin ;
Debucquoy, Annelies ;
Vandecaveye, Vincent ;
Philippens, Marielle ;
Zhou, Mu ;
Gevaert, Olivier ;
Intven, Martijn .
RADIOTHERAPY AND ONCOLOGY, 2018, 126 (03) :437-442
[6]   Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement [J].
Collins, Gary S. ;
Reitsma, Johannes B. ;
Altman, Douglas G. ;
Moons, Karel G. M. .
EUROPEAN UROLOGY, 2015, 67 (06) :1142-1151
[7]   Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer [J].
Cui, Yanfen ;
Yang, Xiaotang ;
Shi, Zhongqiang ;
Yang, Zhao ;
Du, Xiaosong ;
Zhao, Zhikai ;
Cheng, Xintao .
EUROPEAN RADIOLOGY, 2019, 29 (03) :1211-1220
[8]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[9]   Magnetic Resonance, Vendor-independent, Intensity Histogram Analysis Predicting Pathologic Complete Response After Radiochemotherapy of Rectal Cancer [J].
Dinapoli, Nicola ;
Barbaro, Brunella ;
Gatta, Roberto ;
Chiloiro, Giuditta ;
Casa, Calogero ;
Masciocchi, Carlotta ;
Damiani, Andrea ;
Boldrini, Luca ;
Gambacorta, Maria Antonietta ;
Dezio, Michele ;
Mattiucci, Gian Carlo ;
Balducci, Mario ;
van Soest, Johan ;
Dekker, Andre ;
Lambin, Philippe ;
Fiorino, Claudio ;
Sini, Carla ;
De Cobelli, Francesco ;
Di Muzio, Nadia ;
Gumina, Calogero ;
Passoni, Paolo ;
Manfredi, Riccardo ;
Valentini, Vincenzo .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (04) :765-774
[10]   A watch-and-wait approach for locally advanced rectal cancer after a clinical complete response following neoadjuvant chemoradiation: a systematic review and meta-analysis [J].
Dossa, Fahima ;
Chesney, Tyler R. ;
Acuna, Sergio A. ;
Baxter, Nancy N. .
LANCET GASTROENTEROLOGY & HEPATOLOGY, 2017, 2 (07) :501-513