Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation

被引:65
作者
Abbaszadeh, Mostafa [1 ]
机构
[1] Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, Iran
关键词
Finite difference method; Riesz space distributed-order diffusion equation; Unconditional stability; Convergence; TIME-FRACTIONAL DIFFUSION; ACCURATE NUMERICAL-METHOD; WAVE-EQUATIONS;
D O I
10.1016/j.aml.2018.08.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the current paper, an error estimate has been proposed to find a secondorder finite difference scheme for solving the Riesz space distributed-order diffusion equation. The convergence order of the proposed method is O(tau(2)+ h(2)). The numerical results show the efficiency of the new technique. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:179 / 185
页数:7
相关论文
共 46 条
[1]  
[Anonymous], 2014, ABSTR APPL ANAL
[2]  
[Anonymous], 2001, Frac. Calc. Appl. Anal
[3]  
[Anonymous], 2003, ANN GEOPHYS
[4]   Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod [J].
Atanackovica, T. M. ;
Pilipovic, S. ;
Zorica, D. .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2011, 49 (02) :175-190
[5]   An improved collocation method for multi-dimensional space-time variable-order fractional Schrodinger equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
APPLIED NUMERICAL MATHEMATICS, 2017, 111 :197-218
[6]   A quadrature tau method for fractional differential equations with variable coefficients [J].
Bhrawy, A. H. ;
Alofi, A. S. ;
Ezz-Eldien, S. S. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (12) :2146-2152
[7]  
Caputo M., 1995, Ann. Univ. Ferrara, V41, P73, DOI [10.1007/BF02826009, DOI 10.1007/BF02826009]
[8]   Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative [J].
Celik, Cem ;
Duman, Melda .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) :1743-1750
[9]   Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
PHYSICAL REVIEW E, 2002, 66 (04) :7-046129
[10]   A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation [J].
Chen, Minghua ;
Deng, Weihua .
APPLIED MATHEMATICS LETTERS, 2017, 68 :87-93