Forest Fire Forecasting Using Fuzzy Logic Models

被引:16
作者
Nebot, Angela [1 ]
Mugica, Francisco [1 ]
机构
[1] Univ Politen Catalunya, Intelligent Data Sci & Artificial Intelligence Re, Soft Comp Res Grp, Jordi Girona Salgado 1-3, Barcelona 08034, Spain
来源
FORESTS | 2021年 / 12卷 / 08期
关键词
hybrid fuzzy techniques; FIR; ANFIS; forest fire; burned areas prediction; PREDICTION;
D O I
10.3390/f12081005
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
In this study, we explored hybrid fuzzy logic modelling techniques to predict the burned area of forest fires. Fast detection is crucial for successful firefighting, and a model with an accurate prediction ability is extremely useful for optimizing fire management. Fuzzy Inductive Reasoning (FIR) and the Adaptive Neuro-Fuzzy Inference System (ANFIS) are two powerful fuzzy techniques for modelling burned areas of forests in Portugal. The results obtained from them were compared with those of other artificial intelligence techniques applied to the same datasets found in the literature.
引用
收藏
页数:13
相关论文
共 26 条
  • [1] Al-Janabi Samaher, 2018, Applied Computing and Informatics, V14, P214, DOI 10.1016/j.aci.2017.09.006
  • [2] [Anonymous], LANDMARK UNITED SCI
  • [3] [Anonymous], P 13 PORT C ART INT
  • [4] PREDICTING BURNED AREAS OF FOREST FIRES: AN ARTIFICIAL INTELLIGENCE APPROACH
    Castelli, Mauro
    Vanneschi, Leonardo
    Popovic, Ales
    [J]. FIRE ECOLOGY, 2015, 11 (01): : 106 - 118
  • [5] Visual-FIR: A tool for model identification and prediction of dynamical complex systems
    Escobet, Antoni
    Nebot, Angela
    Cellier, Francois E.
    [J]. SIMULATION MODELLING PRACTICE AND THEORY, 2008, 16 (01) : 76 - 92
  • [6] Environmental drivers of fire severity in extreme fire events that affect Mediterranean pine forest ecosystems
    Garcia-Llamas, Paula
    Suarez-Seoane, Susana
    Taboada, Angela
    Fernandez-Manso, Alfonso
    Quintano, Carmen
    Fernandez-Garcia, Victor
    Manuel Fernandez-Guisuraga, Jose
    Marcos, Elena
    Calvo, Leonor
    [J]. FOREST ECOLOGY AND MANAGEMENT, 2019, 433 : 24 - 32
  • [7] Comparisons of Diverse Machine Learning Approaches for Wildfire Susceptibility Mapping
    Gholamnia, Khalil
    Nachappa, Thimmaiah Gudiyangada
    Ghorbanzadeh, Omid
    Blaschke, Thomas
    [J]. SYMMETRY-BASEL, 2020, 12 (04):
  • [8] IPCC, 2019, LANDM UN SCI REP INF
  • [9] Jaafari A, 2019, SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES, P607, DOI 10.1016/B978-0-12-815226-3.00028-4
  • [10] ANFIS - ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM
    JANG, JSR
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (03): : 665 - 685