Roman domination in direct product graphs and rooted product graphs1

被引:4
作者
Martinez, Abel Cabrera [1 ]
Peterin, Iztok [2 ,3 ]
Yero, Ismael G. [4 ]
机构
[1] Univ Rovira & Virgili, Dept Denginyeria Informat Matemat, Tarragona, Spain
[2] Univ Maribor, Fac Elect Engn & Comp Sci, Maribor, Slovenia
[3] IMFM, Jadranska 19, Ljubljana 1000, Slovenia
[4] Univ Cadiz, Dept Mat, Escuela Politecn Super Algeciras, Cadiz, Spain
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 10期
关键词
roman domination; domination; direct product graph; rooted product graph; EXTREMAL PROBLEMS; CARDINAL PRODUCT; NUMBER; PATHS;
D O I
10.3934/math.2021643
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with vertex set V(G). A function f : V(G) -> {0, 1, 2) is a Roman dominating function on G if every vertex v is an element of V(G) for which f(v) = 0 is adjacent to at least one vertex u is an element of V(G) such that f(u) = 2. The Roman domination number of G is the minimum weight omega(f) = Sigma(x is an element of V(G)) f(x) among all Roman dominating functions f on G. In this article we study the Roman domination number of direct product graphs and rooted product graphs. Specifically, we give several tight lower and upper bounds for the Roman domination number of direct product graphs involving some parameters of the factors, which include the domination, (total) Roman domination, and packing numbers among others. On the other hand, we prove that the Roman domination number of rooted product graphs can attain only three possible values, which depend on the order, the domination number, and the Roman domination number of the factors in the product. In addition, theoretical characterizations of the classes of rooted product graphs achieving each of these three possible values are given.
引用
收藏
页码:11084 / 11096
页数:13
相关论文
共 26 条
  • [1] TOTAL ROMAN DOMINATION IN GRAPHS
    Ahangar, Hossein Abdollahzadeh
    Henning, Michael A.
    Samodivkin, Vladimir
    Yero, Ismael G.
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) : 501 - 517
  • [2] The hierarchical product of graphs
    Barriere, L.
    Comellas, F.
    Dalfo, C.
    Fiol, M. A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2009, 157 (01) : 36 - 48
  • [3] Dominating the Direct Product of Two Graphs through Total Roman Strategies
    Cabrera Martinez, Abel
    Kuziak, Dorota
    Peterin, Iztok
    Yero, Ismael G.
    [J]. MATHEMATICS, 2020, 8 (09)
  • [4] EXTREMAL PROBLEMS FOR ROMAN DOMINATION
    Chambers, Erin W.
    Kinnersley, Bill
    Prince, Noah
    West, Douglas B.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) : 1575 - 1586
  • [5] ROMAN AND TOTAL DOMINATION
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    [J]. QUAESTIONES MATHEMATICAE, 2015, 38 (06) : 749 - 757
  • [6] Roman domination in graphs
    Cockayne, EJ
    Dreyer, PA
    Hedetniemi, SM
    Hedetniemi, ST
    [J]. DISCRETE MATHEMATICS, 2004, 278 (1-3) : 11 - 22
  • [7] On the Roman domination number of a graph
    Favaron, O.
    Karami, H.
    Khoeilar, R.
    Sheikholeslami, S. M.
    [J]. DISCRETE MATHEMATICS, 2009, 309 (10) : 3447 - 3451
  • [8] Godsil CD., 1978, B AUST MATH SOC, V18, P21, DOI [10.1017/S0004972700007760 0376.05049, DOI 10.1017/S0004972700007760]
  • [9] ROMAN DOMINATION IN CARTESIAN PRODUCT GRAPHS AND STRONG PRODUCT GRAPHS
    Gonzalez Yero, Ismael
    Alberto Rodriguez-Velazquez, Juan
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2013, 7 (02) : 262 - 274
  • [10] Coloring, location and domination of corona graphs
    Gonzalez Yero, Ismael
    Kuziak, Dorota
    Rondon Aguilar, Amauris
    [J]. AEQUATIONES MATHEMATICAE, 2013, 86 (1-2) : 1 - 21