Targeted multimodal theranostics via biorecognition controlled aggregation of metallic nanoparticle composites

被引:44
作者
Hu, Xi-Le [1 ,2 ]
Zang, Yi [3 ]
Li, Jia [3 ]
Chen, Guo-Rong [1 ,2 ]
James, Tony D. [4 ]
He, Xiao-Peng [1 ,2 ]
Tian, He [1 ,2 ]
机构
[1] E China Univ Sci & Technol, Key Lab Adv Mat, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] E China Univ Sci & Technol, Inst Fine Chem, 130 Meilong Rd, Shanghai 200237, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Mat Med, Natl Ctr Drug Screening, State Key Lab Drug Res, 189 Guo Shoujing Rd, Shanghai 201203, Peoples R China
[4] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
基金
上海市科技启明星计划;
关键词
GOLD; CANCER; NANOMATERIALS; EFFICIENT; PROTEINS; DELIVERY; AUNPS;
D O I
10.1039/c6sc01463a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have developed a theranostic nanocomposite of metallic nanoparticles that uses two distinct fluorescence mechanisms: Forster Resonance Energy Transfer (FRET) and Metal-Enhanced Fluorescence (MEF) controlled by ligand-receptor interaction. Supramolecular assembly of the fluorophore-labeled glycoligands to cyclodextrin-capped gold nanoparticles produces a nanocomposite with a quenched fluorescence due to FRET from the fluorophore to the proximal particle. Subsequently, interaction with a selective protein receptor leads to an aggregation of the composite, reactivating the fluorescence by MEF from the distal metallic particles to fluorophores encapsulated in the aggregates. The aggregation also causes a red-shift in absorbance of the composite, thereby enhancing the production of reactive oxygen species (ROS) on red-light irradiation. Our nanocomposite has proven suitable for targeted cancer cell imaging as well as multimode therapy using both the photodynamic and drug delivery properties of the composite.
引用
收藏
页码:4004 / 4008
页数:5
相关论文
共 31 条
[11]   Chrominance to Dimension: A Real-Time Method for Measuring the Size of Single Gold Nanoparticles [J].
Jing, Chao ;
Gu, Zhen ;
Ying, Yi-Lun ;
Li, Da-Wei ;
Zhang, Lei ;
Long, Yi-Tao .
ANALYTICAL CHEMISTRY, 2012, 84 (10) :4284-4291
[12]  
Kelley SO, 2014, NAT NANOTECHNOL, V9, P969, DOI [10.1038/nnano.2014.261, 10.1038/NNANO.2014.261]
[13]  
Kosaka PM, 2014, NAT NANOTECHNOL, V9, P1047, DOI [10.1038/nnano.2014.250, 10.1038/NNANO.2014.250]
[14]   Monitoring of Endogenous Hydrogen Sulfide in Living Cells Using Surface-Enhanced Raman Scattering [J].
Li, Da-Wei ;
Qu, Lu-Lu ;
Hu, Kai ;
Long, Yi-Tao ;
Tian, He .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (43) :12758-12761
[15]   Nanoparticles in Photodynamic Therapy [J].
Lucky, Sasidharan Swarnalatha ;
Soo, Khee Chee ;
Zhang, Yong .
CHEMICAL REVIEWS, 2015, 115 (04) :1990-2042
[16]  
Nie ZH, 2010, NAT NANOTECHNOL, V5, P15, DOI [10.1038/nnano.2009.453, 10.1038/NNANO.2009.453]
[17]   Diagnosing lung cancer in exhaled breath using gold nanoparticles [J].
Peng, Gang ;
Tisch, Ulrike ;
Adams, Orna ;
Hakim, Meggie ;
Shehada, Nisrean ;
Broza, Yoav Y. ;
Billan, Salem ;
Abdah-Bortnyak, Roxolyana ;
Kuten, Abraham ;
Haick, Hossam .
NATURE NANOTECHNOLOGY, 2009, 4 (10) :669-673
[18]   Dual-Targeting Nanovesicles for In Situ Intracellular Imaging of and Discrimination between Wild-type and Mutant p53 [J].
Qian, Ruocan ;
Cao, Yue ;
Long, Yi-Tao .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (02) :719-723
[19]  
Rana S, 2015, NAT NANOTECHNOL, V10, P65, DOI [10.1038/nnano.2014.285, 10.1038/NNANO.2014.285]
[20]  
Rostovtsev VV, 2002, ANGEW CHEM INT EDIT, V41, P2596, DOI 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO