The positivity-preserving finite volume scheme with fixed stencils for anisotropic diffusion problems on general polyhedral meshes

被引:0
作者
Yang, Di [1 ,2 ]
Gao, Zhiming [2 ]
Ni, Guoxi [2 ]
机构
[1] China Acad Engn Phys, Grad Sch, Beijing, Peoples R China
[2] Inst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
anisotropic diffusion problems; finite volume scheme; polyhedral meshes; positivity-preserving; three dimensions; vertex interpolation algorithm; EQUATIONS; HEAT; DISCRETIZATION; APPROXIMATION; OPERATORS;
D O I
10.1002/fld.5126
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Two kinds of nonlinear cell-centered positivity-preserving finite volume schemes are proposed for the anisotropic diffusion problems on general three-dimensional polyhedral meshes. First, the one-sided flux on the cell-faces is discretized using the fixed stencil of all vertices, then the cell-centered discretization scheme is obtained using the nonlinear two-point flux approximation. On this basis, a new explicit weighted second-order vertex interpolation algorithm for arbitrary polyhedral meshes is designed to eliminate the vertex auxiliary unknowns in the scheme. In addition, an improved Anderson acceleration algorithm is adopted for nonlinear iteration. Finally, some benchmark examples are given to verify the convergence and positivity-preserving property of the two schemes.
引用
收藏
页码:2137 / 2171
页数:35
相关论文
共 31 条
  • [1] A compact multipoint flux approximation method with improved robustness
    Aavatsmark, I.
    Eigestad, G. T.
    Mallison, B. T.
    Nordbotten, J. M.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (05) : 1329 - 1360
  • [2] Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media
    Aavatsmark, I
    Barkve, T
    Boe, O
    Mannseth, T
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 127 (01) : 2 - 14
  • [3] Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes
    Burman, E
    Ern, A
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 338 (08) : 641 - 646
  • [4] A cell-centered multipoint flux approximation method with a diamond stencil coupled with a higher order finite volume method for the simulation of oil-water displacements in heterogeneous and anisotropic petroleum reservoirs
    Contreras, F. R. L.
    Lyra, P. R. M.
    Souza, M. R. A.
    Carvalho, D. K. E.
    [J]. COMPUTERS & FLUIDS, 2016, 127 : 1 - 16
  • [5] A linearity-preserving finite volume scheme with a diamond stencil for the simulation of anisotropic and highly heterogeneous diffusion problems using tetrahedral meshes
    de Lira Filho, Ricardo J. M.
    dos Santos, Sidicley R.
    Cavalcante, Tulio de M.
    Contreras, Fernando R. L.
    Lyra, Paulo R. M.
    de Carvalho, Darlan K. E.
    [J]. COMPUTERS & STRUCTURES, 2021, 250
  • [6] Theoretical and numerical research of wire array Z-pinch and dynamic hohlraum at IAPCM
    Ding, Ning
    Zhang, Yang
    Xiao, Delong
    Wu, Jiming
    Dai, Zihuan
    Yin, Li
    Gao, Zhiming
    Sun, Shunkai
    Xue, Chuang
    Ning, Cheng
    Shu, Xiaojian
    Wang, Jianguo
    [J]. MATTER AND RADIATION AT EXTREMES, 2016, 1 (03) : 135 - 152
  • [7] 3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids
    Eymard, Robert
    Henry, Gerard
    Herbin, Raphaele
    Hubert, Florence
    Kloefkorn, Robert
    Manzini, Gianmarco
    [J]. FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 895 - +
  • [8] SMALL-STENCIL 3D SCHEMES FOR DIFFUSIVE FLOWS IN POROUS MEDIA
    Eymard, Robert
    Guichard, Cindy
    Herbin, Raphaele
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (02): : 265 - 290
  • [9] A SECOND-ORDER POSITIVITY-PRESERVING FINITE VOLUME SCHEME FOR DIFFUSION EQUATIONS ON GENERAL MESHES
    Gao, Zhiming
    Wu, Jiming
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01) : A420 - A438
  • [10] A linearity-preserving cell-centered scheme for the heterogeneous and anisotropic diffusion equations on general meshes
    Gao, Zhiming
    Wu, Jiming
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (12) : 2157 - 2183