Ring Dirac solitons in nonlinear topological systems

被引:28
作者
Poddubny, Alexander N. [1 ,2 ]
Smirnova, Daria A. [1 ,3 ]
机构
[1] Australian Natl Univ, Nonlinear Phys Ctr, Canberra, ACT 2601, Australia
[2] Ioffe Inst, St Petersburg 194021, Russia
[3] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod 603950, Russia
基金
澳大利亚研究理事会; 俄罗斯基础研究基金会;
关键词
FIELD; STABILITY; EQUATION;
D O I
10.1103/PhysRevA.98.013827
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study solitons of the two-dimensional nonlinear Dirac equation with asymmetric cubic nonlinearity. We show that with the nonlinearity parameters specifically tuned, a high degree of localization of both spinor components is enabled on a ring of certain radius. Such ring Dirac soliton can be viewed as a self-induced nonlinear domain wall and can be implemented in nonlinear photonic graphene lattice with Kerr-like nonlinearities. Our model could be instructive for understanding localization mechanisms in nonlinear topological systems.
引用
收藏
页数:7
相关论文
共 50 条
[31]   On linear instability of solitary waves for the nonlinear Dirac equation [J].
Comech, Andrew ;
Guan, Meijiao ;
Gustafson, Stephen .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (03) :639-654
[32]   Topological Dirac semimetal phase in GexSny alloys [J].
Kong, Xiangru ;
Li, Linyang ;
Peeters, Francois M. .
APPLIED PHYSICS LETTERS, 2018, 112 (25)
[33]   Strain solitons and topological defects in bilayer graphene [J].
Alden, Jonathan S. ;
Tsen, Adam W. ;
Huang, Pinshane Y. ;
Hovden, Robert ;
Brown, Lola ;
Park, Jiwoong ;
Muller, David A. ;
McEuen, Paul L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (28) :11256-11260
[34]   Vector solitons in nonlinear lattices [J].
Kartashov, Yaroslav V. ;
Malomed, Boris A. ;
Vysloukh, Victor A. ;
Torner, Lluis .
OPTICS LETTERS, 2009, 34 (23) :3625-3627
[35]   Nonlinear Spin and Pseudo-Spin Symmetric Dirac Equations [J].
Alhaidari, A. D. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (02) :685-693
[36]   Solitary Waves of a PT-Symmetric Nonlinear Dirac Equation [J].
Cuevas-Maraver, Jesus ;
Kevrekidis, Panayotis G. ;
Saxena, Avadh ;
Cooper, Fred ;
Khare, Avinash ;
Comech, Andrew ;
Bender, Carl M. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2016, 22 (05) :67-75
[37]   Compact Implicit Integration Factor Method for the Nonlinear Dirac Equation [J].
Zhang, Jing-Jing ;
Li, Xiang-Gui ;
Shao, Jing-Fang .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2017, 2017
[38]   Propagation of solitons in a two-dimensional nonlinear square lattice [J].
Zaera, Ramon ;
Vila, Javier ;
Fernandez-Saez, Jose ;
Ruzzene, Massimo .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 106 :188-204
[39]   Spatial solitons supported by localized gain in nonlinear optical waveguides [J].
Lam, C. -K. ;
Malomed, B. A. ;
Chow, K. W. ;
Wai, P. K. A. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 173 :233-243
[40]   Nonrelativistic Limit of Ground State Solutions for Nonlinear Dirac-Klein-Gordon Systems [J].
Dong, Xiaojing ;
Tang, Zhongwei .
MINIMAX THEORY AND ITS APPLICATIONS, 2022, 7 (02) :253-276