Learning string-edit distance

被引:402
作者
Ristad, ES [1 ]
Yianilos, PN
机构
[1] Mnemon Technol Inc, Princeton, NJ USA
[2] NEC Res Inst, Princeton, NJ 08540 USA
关键词
string-edit distance; Levenshtein distance; stochastic transduction; syntactic pattern recognition; spelling correction; string correction; string similarity; string classification; pronunciation modeling; Switchboard corpus;
D O I
10.1109/34.682181
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many applications, it is necessary to determine the similarity of two strings. A widely-used notion of string similarity is the edit distance: The minimum number of insertions, deletions, and substitutions required to transform one string into the other. In this report, we provide a stochastic model for string-edit distance. Our stochastic model allows us to learn a string-edit distance function from a corpus of examples. We illustrate the utility of our approach by applying it to the difficult problem of learning the pronunciation of words in conversational speech. In this application, we learn a string-edit distance with nearly one-fifth the error rate of the untrained Levenshtein distance. Our approach is applicable to any string classification problem that may be solved using a similarity function against a database of labeled prototypes.
引用
收藏
页码:522 / 532
页数:11
相关论文
共 31 条
[21]   MIXTURE DENSITIES, MAXIMUM-LIKELIHOOD AND THE EM ALGORITHM [J].
REDNER, RA ;
WALKER, HF .
SIAM REVIEW, 1984, 26 (02) :195-237
[22]  
RILEY M, 1995, EUROSPEECH 95 ECSA 4, V1, P207
[23]  
RILEY MD, 1996, AUTOMATIC SPEECH SPE, pCH12
[24]  
Ristad E.S., 1997, P 14 INT C MACH LEAR, P287
[25]  
RISTAD ES, 1997, CSTR53296 SCI PRINC
[26]  
RISTAD ES, 1997, P 35 ANN M ACL MADR, P381
[27]  
RISTAD ES, 1996, CSTR53396 PRINC U PR
[28]  
SANKOFF D, 1983, TIME WARPS STRING ED
[30]   STRING-TO-STRING CORRECTION PROBLEM [J].
WAGNER, RA ;
FISCHER, MJ .
JOURNAL OF THE ACM, 1974, 21 (01) :168-173