Finite strain effects in piezoelectric energy harvesters under direct and parametric excitations

被引:23
作者
Mam, Koliann [1 ,2 ]
Peigney, Michael [1 ]
Siegert, Dominique [3 ]
机构
[1] Univ Paris Est, CNRS, Lab Navier UMR 8205, Ecole Ponts ParisTech,IFSTTAR, F-77455 Marne La Vallee, France
[2] Ecole Polytech, F-91128 Palaiseau, France
[3] Univ Paris Est, IFSTTAR, COSYS, LISIS, F-77455 Marne La Vallee, France
关键词
Piezoelectric materials; Finite strains; Energy harvesting; Parametric resonance; Nonlinearities; BEAM;
D O I
10.1016/j.jsv.2016.11.022
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper addresses the dynamic behavior of piezoelectric cantilevers under base excitations. Such devices are frequently used for applications in energy harvesting. An Euler-Bernoulli model that accounts for large-deflection effects and piezoelectric nonlinearities is proposed. Closed-form expressions of the frequency response are derived, both for direct excitation (i.e. with a base acceleration transverse to the axis of the cantilever) and parametric excitation (i.e. with a base acceleration along the axis of the cantilever). Experimental results are reported and used for assessing the validity of the proposed model. Building on the model presented, some critical issues related to energy-harvesting are investigated, such as the influence of nonlinearities on the optimal load resistance, the limits of validity of linear models, and hysteresis effects in the electrical power. The efficiency of direct and parametric excitation is also compared in detail. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:411 / 437
页数:27
相关论文
共 24 条
  • [1] Aeroelastic energy harvesting: A review
    Abdelkefi, A.
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2016, 100 : 112 - 135
  • [2] Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters
    Abdelkefi, A.
    Nayfeh, A. H.
    Hajj, M. R.
    [J]. NONLINEAR DYNAMICS, 2012, 67 (02) : 1147 - 1160
  • [3] Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation
    Abdelkefi, A.
    Nayfeh, A. H.
    Hajj, M. R.
    [J]. NONLINEAR DYNAMICS, 2012, 67 (02) : 1221 - 1232
  • [4] Modeling, validation, and performance of low-frequency piezoelectric energy harvesters
    Abdelkefi, Abdessattar
    Barsallo, Nilma
    Tang, Lihua
    Yang, Yaowen
    Hajj, Muhammad R.
    [J]. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2014, 25 (12) : 1429 - 1444
  • [5] Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation
    Ajitsaria, J.
    Choe, S. Y.
    Shen, D.
    Kim, D. J.
    [J]. SMART MATERIALS AND STRUCTURES, 2007, 16 (02) : 447 - 454
  • [6] [Anonymous], 2011, PIEZOELECTRIC ENERGY, DOI DOI 10.1002/9781119991151.APP1
  • [7] Parametric excitation of a linear oscillator
    Butikov, EI
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2004, 25 (04) : 535 - 554
  • [8] On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
    Daqaq, Mohammed F.
    Masana, Ravindra
    Erturk, Alper
    Quinn, D. Dane
    [J]. APPLIED MECHANICS REVIEWS, 2014, 66 (04)
  • [9] Investigation of Power Harvesting via Parametric Excitations
    Daqaq, Mohammed F.
    Stabler, Christopher
    Qaroush, Yousef
    Seuaciuc-Osorio, Thiago
    [J]. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2009, 20 (05) : 545 - 557
  • [10] Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters
    duToit, NE
    Wardle, BL
    Kim, SG
    [J]. INTEGRATED FERROELECTRICS, 2005, 71 : 121 - 160