Molecular dynamics simulations on the shear viscosity of Al2O3 nanofluids

被引:44
作者
Lou, Zhaoyang [1 ]
Yang, Mingli [1 ]
机构
[1] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Al2O3; nanofluids; Viscosity; Molecular dynamics simulation; Density functional theory calculation; URANYL(VI) ADSORPTION EQUILIBRIA; THERMAL-CONDUCTIVITY; HEAT-TRANSFER; ETHYLENE-GLYCOL; WATER; SUSPENSIONS; MODEL; FLOW; MONTMORILLONITE; ENHANCEMENT;
D O I
10.1016/j.compfluid.2015.05.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The shear viscosity of nanofluids is sensitive to the size and concentration of the added nano particles. Using equilibrium molecular dynamics (MD) simulations we studied the particle size, particle concentration and temperature dependence of the shear viscosity of Al2O3 nanofluids. Larger viscosity was predicted for the nanofluids with smaller particle size, higher particle concentration, and lower temperature, which reproduced the experimental trends. The increased viscosity is attributed to the particle-water interaction. Calculations at the density functional theory level conform that the interaction energy between Al2O3 particle and water molecule is stronger than that between water molecules. Based on the simulated results an expression was proposed to describe the mixed effect of particle size, particle concentration and temperature on the viscosity of Al2O3 nanofluids. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:17 / 23
页数:7
相关论文
共 57 条
[41]   Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture [J].
Namburu, Praveen K. ;
Kulkarni, Devdatta P. ;
Misra, Debasmita ;
Das, Debendra K. .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2007, 32 (02) :397-402
[42]   Viscosity data for Al2O3-water nanofluid-hysteresis:: is heat transfer enhancement using nanofluids reliable? [J].
Nguyen, C. T. ;
Desgranges, F. ;
Galanisc, N. ;
Roy, G. ;
Mare, T. ;
Boucher, S. ;
Mintsa, H. Angue .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2008, 47 (02) :103-111
[43]   Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles [J].
Pak, BC ;
Cho, YI .
EXPERIMENTAL HEAT TRANSFER, 1998, 11 (02) :151-170
[44]  
Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865
[45]   FAST PARALLEL ALGORITHMS FOR SHORT-RANGE MOLECULAR-DYNAMICS [J].
PLIMPTON, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 117 (01) :1-19
[46]   Computational study of thermal dependence of accommodation coefficients in a nano-channel and the prediction of velocity profiles [J].
Prabha, Sooraj K. ;
Sathian, Sarith P. .
COMPUTERS & FLUIDS, 2012, 68 :47-53
[47]   Effect of aggregation on thermal conduction in colloidal nanofluids [J].
Prasher, Ravi ;
Evans, William ;
Meakin, Paul ;
Fish, Jacob ;
Phelan, Patrick ;
Keblinski, Pawel .
APPLIED PHYSICS LETTERS, 2006, 89 (14)
[48]   Thermal resistance and pressure drop of silicon based micro pin fin heat exchanger under cross flow [J].
Prasher, Ravi S. ;
Dirner, John ;
Chang, Je-Young ;
Myers, Alan ;
Chau, David ;
He, Dongming ;
Prstic, Suzana .
ADVANCES IN ELECTRONIC PACKAGING 2005, PTS A-C, 2005, :717-725
[49]   Structural and Electronic Properties of (Al2O3)n Clusters with n=1-10 from First Principles Calculations [J].
Rahane, Amol B. ;
Deshpande, Mrinalini D. ;
Kumar, Vijay .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (37) :18111-18121
[50]   Molecular dynamics simulations on scattering of single Ar, N2, and CO2 molecules on realistic surfaces [J].
Reinhold, J. ;
Veltzke, T. ;
Wells, B. ;
Schneider, J. ;
Meierhofer, F. ;
Ciacchi, L. Colombi ;
Chaffee, A. ;
Thoeming, J. .
COMPUTERS & FLUIDS, 2014, 97 :31-39