Calibration of the Interaction Parameters between the Proppant and Fracture Wall and the Effects of These Parameters on Proppant Distribution

被引:7
作者
Li, Mingzhong [1 ]
Liu, Chunting [1 ]
Zhang, Guodong [2 ]
机构
[1] China Univ Petr East China, Coll Petr Engn, Qingdao 266580, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Electromech Engn, Qingdao 266061, Peoples R China
基金
中国国家自然科学基金;
关键词
interaction parameters; calibration method; coupled CFD-DEM model; wall roughness; unevenly distributed proppant diameter; NUMERICAL-SIMULATION; HYDRAULIC-FRACTURE; COUPLED CFD; TRANSPORT; COLLISIONS; FLUID; MODEL;
D O I
10.3390/en13082099
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Saltation and reputation (creep) dominate proppant transport rather than suspension during slickwater fracturing, due to the low sand-carrying capacity of the slickwater. Thus, the interaction parameters between proppants and fracture walls, which affect saltation and reputation, play a more critical role in proppant transport. In this paper, a calibration method for the interaction parameters between proppants and walls is built. A three-dimensional coupled computational fluid dynamics-discrete element method (CFD-DEM) model is established to study the effects of the interaction parameters on proppant migration, considering the wall roughness and unevenly distributed diameters of proppants. The simulation results show that a lower static friction coefficient and rolling friction coefficient can result in a smaller equilibrium height of the sand bank and a smaller build angle and drawdown angle, which is beneficial for carrying the proppant to the distal end of the fracture. The wall roughness and the unevenly distributed diameter of the proppants increase the collision between proppant and proppant or the wall, whereas the interactions have little impact on the sandbank morphology, slightly increasing the equilibrium height of the sandbank.
引用
收藏
页数:19
相关论文
共 52 条
[1]   Computer simulation of hydraulic fractures [J].
Adachi, A. ;
Siebrits, E. ;
Peirce, A. ;
Desroches, J. .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2007, 44 (05) :739-757
[2]   A review on the angle of repose of granular materials [J].
Al-Hashemi, Hamzah M. Beakawi ;
Al-Amoudi, Omar S. Baghabra .
POWDER TECHNOLOGY, 2018, 330 :397-417
[3]  
Alotaibi M.A., 2015, P SPE ANN TECHN C EX
[4]  
[Anonymous], 2014, P SPE CSUR UNC RES C
[5]   Numerical simulation of proppant transport in a planar fracture. A study of perforation placement and injection strategy [J].
Baldini, Mauro ;
Manuel Carlevaro, C. ;
Pugnaloni, Luis A. ;
Sanchez, Martin .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2018, 109 :207-218
[6]   EXPERIMENTAL AND NUMERICAL MODELING OF CONVECTIVE PROPPANT TRANSPORT [J].
BARREE, RD ;
CONWAY, MW .
JOURNAL OF PETROLEUM TECHNOLOGY, 1995, 47 (03) :216-222
[7]  
Barton N., 1977, Rock Mechanics, V10, P1, DOI 10.1007/BF01261801
[8]  
Blyton C.A., 2015, P SPE ANN TECHN C EX
[9]   Physics of Proppant Transport Through Hydraulic Fracture Network [J].
Chang, Oliver ;
Kinzel, Michael ;
Dilmore, Robert ;
Wang, John Yilin .
JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2018, 140 (03)
[10]   Calibration of granular material parameters for DEM modelling and numerical verification by blade-granular material interaction [J].
Coetzee, C. J. ;
Els, D. N. J. .
JOURNAL OF TERRAMECHANICS, 2009, 46 (01) :15-26