Path Integral Approach to Nondispersive Optical Fiber Communication Channel

被引:3
作者
Reznichenko, Aleksei, V [1 ,2 ]
Terekhov, Ivan S. [1 ,2 ]
机构
[1] Russian Acad Sci, Theoret Dept, Budker Inst Nucl Phys, Siberian Branch, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Dept Phys, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
nonlinear optical fiber channel with zero dispersion; channel capacity; path integral formalism; KERR NONLINEARITY; CAPACITY; LIMITS; NOISE;
D O I
10.3390/e22060607
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present paper we summarize the methods and results of calculations for the theoretical informational quantities obtained in our works for the nondispersive optical fiber channel. We considered two models: the per-sample model and the model where the input signal depends on time. For these models we found the approach for the calculation of the mutual information exactly in the nonlinearity parameter but for the large signal-to-noise power ratio. Using this approach for the per-sample model we found the lower bound of the channel capacity in the intermediate power range.
引用
收藏
页数:30
相关论文
共 33 条
  • [1] [Anonymous], 1984, MONOGRAPHS CONT MATH
  • [2] [Anonymous], 1998, NONLINEAR OPTICAL CO
  • [3] Capacity Limits of Optical Fiber Networks
    Essiambre, Rene-Jean
    Kramer, Gerhard
    Winzer, Peter J.
    Foschini, Gerard J.
    Goebel, Bernhard
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2010, 28 (04) : 662 - 701
  • [4] Capacity Limits of Information Transport in Fiber-Optic Networks
    Essiambre, Rene-Jean
    Foschini, Gerard J.
    Kramer, Gerhard
    Winzer, Peter J.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (16)
  • [5] Feynman R P, 1965, Quantum Mechanics and Path Integrals
  • [6] Gardiner Crispin W, 1985, HDB STOCHASTIC METHO, V3
  • [7] Gradshtein I. S., 2014, Table of Integrals, Series, and Products
  • [8] QUANTUM NOISE IN A SOLITON-LIKE REPEATER SYSTEM
    HAUS, HA
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (05) : 1122 - 1126
  • [9] Effective action for stochastic partial differential equations
    Hochberg, D
    Molina-París, C
    Pérez-Mercader, J
    Visser, M
    [J]. PHYSICAL REVIEW E, 1999, 60 (06) : 6343 - 6360
  • [10] Ilyas M., 2003, The Handbook of Optical Communication Networks