Comparison of transient state and steady state exciton-exciton annihilation rates based on Forster-type energy transfer

被引:9
作者
Yonehara, Toshiya [1 ]
Goushi, Kenichi [2 ,3 ]
Sawabe, Tomoaki [1 ]
Takasu, Isao [1 ]
Adachi, Chihaya [2 ,3 ]
机构
[1] Toshiba Co Ltd, Corp Res & Dev Ctr, Elect Imaging Lab, Kawasaki, Kanagawa 2128582, Japan
[2] Kyushu Univ, Ctr Organ Photon & Elect Res OPERA, Fukuoka 8190395, Japan
[3] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Fukuoka 8190395, Japan
基金
日本学术振兴会;
关键词
LIGHT-EMITTING-DIODES; ACTIVATED DELAYED FLUORESCENCE; HIGH-EFFICIENCY; DEVICES; ELECTROLUMINESCENCE; PHOSPHORESCENCE;
D O I
10.7567/JJAP.54.071601
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigated differences between the transient state and steady state exciton-exciton annihilation rates based on Forster-type energy transfer. The exciton-exciton annihilation rate of an organic semiconductor is usually determined by transient state photoluminescence measurements using a pulsed laser or steady state photoluminescence measurements using a continuous wave laser. However, it is unclear that the respective annihilation rates determined by their rate equations are the same. In calculations with platinum-octaethylporphyrin (PtOEP) parameters, Monte Carlo simulations gave two different annihilation rates for the transient state and the steady state. The analytical models based on Forster-type energy transfer also showed the same result. These results indicate that the exciton-exciton annihilation rates in transient state and steady state are distinguished. (C) 2015 The Japan Society of Applied Physics
引用
收藏
页数:4
相关论文
共 30 条
[1]   Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J].
Adachi, C ;
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5048-5051
[2]   High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials [J].
Adachi, C ;
Baldo, MA ;
Forrest, SR ;
Thompson, ME .
APPLIED PHYSICS LETTERS, 2000, 77 (06) :904-906
[3]   Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation [J].
Baldo, MA ;
Adachi, C ;
Forrest, SR .
PHYSICAL REVIEW B, 2000, 62 (16) :10967-10977
[4]   Absorption and emission spectroscopic characterization of platinum-octaethyl-porphyrin (PtOEP) [J].
Bansal, A. K. ;
Holzer, W. ;
Penzkofer, A. ;
Tsuboi, Taiju .
CHEMICAL PHYSICS, 2006, 330 (1-2) :118-129
[5]   A THEORY OF SENSITIZED LUMINESCENCE IN SOLIDS [J].
DEXTER, DL .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (05) :836-850
[6]   Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes [J].
Endo, Ayataka ;
Sato, Keigo ;
Yoshimura, Kazuaki ;
Kai, Takahiro ;
Kawada, Atsushi ;
Miyazaki, Hiroshi ;
Adachi, Chihaya .
APPLIED PHYSICS LETTERS, 2011, 98 (08)
[7]   Thermally Activated Delayed Fluorescence from Sn4+-Porphyrin Complexes and Their Application to Organic Light-Emitting Diodes - A Novel Mechanism for Electroluminescence [J].
Endo, Ayataka ;
Ogasawara, Mai ;
Takahashi, Atsushi ;
Yokoyama, Daisuke ;
Kato, Yoshimine ;
Adachi, Chihaya .
ADVANCED MATERIALS, 2009, 21 (47) :4802-+
[8]  
FORSTER T, 1949, Z NATURFORSCH A, V4, P321
[9]   Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes [J].
Giebink, N. C. ;
Forrest, S. R. .
PHYSICAL REVIEW B, 2008, 77 (23)
[10]   Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion [J].
Goushi, Kenichi ;
Yoshida, Kou ;
Sato, Keigo ;
Adachi, Chihaya .
NATURE PHOTONICS, 2012, 6 (04) :253-258